CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France.
Université Paris-Saclay, France.
NMR Biomed. 2020 Sep;33(9):e4349. doi: 10.1002/nbm.4349. Epub 2020 Jul 1.
We have recently proposed a new optimization algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) to design efficient compressive sampling patterns for magnetic resonance imaging (MRI). This method has a few advantages over conventional non-Cartesian trajectories such as radial lines or spirals: i) it allows to sample the k-space along any arbitrary density while the other two are restricted to radial densities and ii) it optimizes the gradient waveforms for a given readout time. Here, we introduce an extension of the SPARKLING method for 3D imaging by considering both stacks-of-SPARKLING and fully 3D SPARKLING trajectories. Our method allowed to achieve an isotropic resolution of 600 μm in just 45 seconds for T2∗-weighted ex vivo brain imaging at 7 Tesla over a field-of-view of 200 × 200 × 140 mm . Preliminary in vivo human brain data shows that a stack-of-SPARKLING is less subject to off-resonance artifacts than a stack-of-spirals.
我们最近提出了一种新的优化算法,称为 SPARKLING(快速 K 空间采样的扩展投影算法),用于设计磁共振成像(MRI)的高效压缩采样模式。与传统的非笛卡尔轨迹(如径向线或螺旋线)相比,该方法具有一些优势:i)它允许沿任何任意密度对 k 空间进行采样,而另外两种轨迹则仅限于径向密度,ii)它为给定的读出时间优化了梯度波形。在这里,我们通过考虑堆叠 SPARKLING 和全 3D SPARKLING 轨迹来扩展 SPARKLING 方法用于 3D 成像。我们的方法允许在 7T 场强下,对 200×200×140mm 的视野进行 T2*-加权离体脑成像,仅用 45 秒即可实现 600μm 的各向同性分辨率。初步的人体大脑数据表明,与堆叠螺旋线相比,堆叠 SPARKLING 受离频伪影的影响更小。