University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.
Clin Pharmacokinet. 2022 Jun;61(6):847-856. doi: 10.1007/s40262-021-01106-x. Epub 2022 Mar 6.
Despite the surge in use of extracorporeal membrane oxygenation (ECMO) in the adult intensive care unit, little guidance is available on the appropriate dosing of antimicrobials in this setting. Ceftriaxone is an antimicrobial with a high affinity to plasma protein, a property identified in the literature as susceptible to sequestration into extracorporeal circuits and hypothesised to require dosage adjustments in this setting.
The aim of this study was to describe the pharmacokinetics of ceftriaxone and identify the best dosing regimen for critically ill adult patients receiving ECMO.
Serial blood samples were taken from patients receiving both ECMO and ceftriaxone. Total and unbound drug concentrations were measured in plasma by chromatographic assay and analysed using a population pharmacokinetic approach with Pmetrics. Dosing simulations were performed to identify the optimal dosing strategy: 60 and 100% of time with free (unbound) drug concentration exceeding the minimum inhibitory concentration (fT).
In total, 14 patients were enrolled, of which three were receiving renal replacement therapy (RRT). Total and unbound ceftriaxone was best described in a two-compartment model with total body weight, serum albumin concentrations, creatinine clearance (CrCL), and the presence of RRT included as significant predictors of pharmacokinetics. Patients not on RRT generated a mean renal clearance of 0.90 L/h, non-renal clearance of 0.33 L/h, and central volume of distribution of 7.94 L. Patients on RRT exhibited a mean total clearance of 1.18 L/h. ECMO variables were not significant predictors of ceftriaxone pharmacokinetics. Steady-state dosing simulations found that dosages of 1 g every 12 h and 2 g every 24 h achieved >90% probabilities of target attainment in patients with CrCL of 0 mL/min with RRT and 30 and 100 mL/min and various serum albumin concentrations (17 and 26 g/L).
Dosing recommendations for critically ill adult patients not on ECMO appear to be sufficient for patients on ECMO. Patients exhibiting augmented renal clearance (> 130 mL/min) or treatment of less susceptible pathogens may require higher doses, which requires further investigation.
尽管体外膜肺氧合(ECMO)在成人重症监护病房中的应用急剧增加,但关于这种情况下抗菌药物的适当剂量的指导却很少。头孢曲松是一种与血浆蛋白亲和力高的抗菌药物,文献中认为这种特性易被隔离到体外回路中,并假设在这种情况下需要调整剂量。
本研究旨在描述头孢曲松的药代动力学,并确定接受 ECMO 的重症成年患者的最佳给药方案。
对接受 ECMO 和头孢曲松治疗的患者进行了连续的血样采集。通过色谱分析测量血浆中的总药物和游离药物浓度,并使用 Pmetrics 进行群体药代动力学分析。进行了剂量模拟,以确定最佳的给药策略:游离(未结合)药物浓度超过最小抑菌浓度(fT)的时间占比分别为 60%和 100%。
共纳入 14 例患者,其中 3 例正在接受肾脏替代治疗(RRT)。总药物和游离头孢曲松最好用双室模型来描述,总体重、血清白蛋白浓度、肌酐清除率(CrCL)以及 RRT 的存在被认为是药代动力学的显著预测因素。未接受 RRT 的患者的平均肾清除率为 0.90 L/h,非肾清除率为 0.33 L/h,中央分布容积为 7.94 L。接受 RRT 的患者的总清除率平均为 1.18 L/h。ECMO 变量不是头孢曲松药代动力学的显著预测因素。稳态剂量模拟发现,对于 CrCL 为 0 mL/min 且接受 RRT 治疗以及 CrCL 为 30 和 100 mL/min 且血清白蛋白浓度为 17 和 26 g/L 的患者,1 g 每 12 h 给药 1 次和 2 g 每 24 h 给药 1 次可达到 90%以上的目标概率。
对于未接受 ECMO 的重症成年患者的剂量建议似乎对于接受 ECMO 的患者也足够了。对于表现出增强的肾清除率(>130 mL/min)或治疗敏感性较低的病原体的患者,可能需要更高的剂量,这需要进一步研究。