Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada.
Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada.
Metallomics. 2022 Apr 30;14(4). doi: 10.1093/mtomcs/mfac007.
Hemorrhagic transformation of ischemic stroke has devastating consequences, with high mortality and poor functional outcomes. Animal models of ischemic stroke also demonstrate the potential for hemorrhagic transformation, which complicates biochemical characterization, treatment studies, and hinders poststroke functional outcomes in affected subjects. The incidence of hemorrhagic transformation of ischemic stroke in animal model research is not commonly reported. The postmortem brain of such cases presents a complex milieu of biomarkers due to the presence of healthy cells, regions of varying degrees of ischemia, dead and dying cells, dysregulated metabolites, and blood components (especially reactive Fe species released from lysed erythrocytes). To improve the characterization of hemorrhage biomarkers on an ischemic stroke background, we have employed a combination of histology, X-ray fluorescence imaging (XFI), and Fourier transform infrared (FTIR) spectroscopic imaging to assess 122 photothrombotic (ischemic) stroke brains. Rapid freezing preserves brain biomarkers in situ and minimizes metabolic artifacts due to postmortem ischemia. Analysis revealed that 25% of the photothrombotic models had clear signs of hemorrhagic transformation. The XFI and FTIR metabolites provided a quantitative method to differentiate key metabolic regions in these models. Across all hemorrhage cases, it was possible to consistently differentiate otherwise healthy tissue from other metabolically distinct regions, including the ischemic infarct, the ischemic penumbra, blood vessels, sites of hemorrhage, and a region surrounding the hemorrhage core that contained elevated lipid oxidation. Chemical speciation of deposited Fe demonstrates the presence of heme-Fe and accumulation of ferritin.
缺血性脑卒中的出血性转化会产生严重的后果,导致高死亡率和较差的功能预后。缺血性脑卒中的动物模型也表现出出血性转化的潜力,这使得生物化学特征分析、治疗研究变得复杂,并影响受影响个体的脑卒中后功能预后。缺血性脑卒中动物模型研究中出血性转化的发生率通常未被报道。由于存在健康细胞、不同程度缺血区域、死亡和濒死细胞、代谢物失调以及血液成分(特别是从裂解的红细胞中释放的反应性铁物质),此类病例的死后大脑呈现出复杂的生物标志物环境。为了改善对缺血性脑卒中背景下出血性生物标志物的特征分析,我们结合了组织学、X 射线荧光成像(XFI)和傅里叶变换红外(FTIR)光谱成像,对 122 例光血栓性(缺血性)脑卒中大脑进行了评估。快速冷冻原位保存了大脑生物标志物,并最大限度地减少了由于死后缺血导致的代谢伪影。分析显示,25%的光血栓模型有明显的出血性转化迹象。XFI 和 FTIR 代谢物提供了一种定量方法来区分这些模型中的关键代谢区域。在所有出血病例中,都能够始终如一地将其他健康组织与其他代谢不同的区域区分开来,包括缺血性梗死、缺血半影区、血管、出血部位以及出血核心周围含有升高的脂质氧化的区域。沉积铁的化学形态表明存在血红素铁和铁蛋白的积累。