Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
Prog Neurobiol. 2019 Jan;172:40-70. doi: 10.1016/j.pneurobio.2018.06.008. Epub 2018 Jul 29.
Under stressful conditions, cellular heme catabolism to carbon monoxide, iron and biliverdin is mediated by the 32 kDa enzyme, heme oxygenase-1 (HO-1). A wide range of pro-oxidant and inflammatory stimuli act on diverse consensus sequences within the Hmox1 promoter to rapidly induce the gene. There is ample evidence attesting to the beneficial effects of HO-1 upregulation in brain. By converting pro-oxidant heme to the antioxidants, biliverdin and bilirubin, HO-1/biliverdin reductase may help restore a more favorable tissue redox microenvironment. Contrariwise, in some cell types and under certain circumstances, heme-derived carbon monoxide and iron may amplify intracellular oxidative stress and exacerbate the disease process. This inimical side of neural HO-1 has often been ignored in biomedical literature promulgating interventions aimed at boosting central HO-1 expression for the management of diverse CNS conditions and is the focus of the current review. A comprehensive model of astroglial stress is presented wherein sustained Hmox1 induction promotes oxidative mitochondrial membrane damage, iron sequestration and mitophagy (macroautophagy). The HO-1 mediated gliopathy renders nearby neuronal constituents vulnerable to oxidative injury and recapitulates 'core' neuropathological features of many aging-related neurodegenerative and some neurodevelopmental brain disorders. A balanced literature should acknowledge that, in a host of chronic human CNS afflictions, the glial HO-1 response may serve as a robust transducer of noxious stimuli, an important driver of relevant neuropathology and a potentially disease-modifying therapeutic target.
在应激条件下,细胞血红素分解为一氧化碳、铁和胆绿素是由 32kDa 的酶血红素加氧酶-1(HO-1)介导的。广泛的促氧化剂和炎症刺激作用于 Hmox1 启动子中的不同共识序列,快速诱导基因表达。有充分的证据表明 HO-1 的上调在大脑中具有有益的作用。通过将促氧化剂血红素转化为抗氧化剂胆绿素和胆红素,HO-1/胆绿素还原酶可能有助于恢复更有利的组织氧化还原微环境。相反,在某些细胞类型和某些情况下,血红素衍生的一氧化碳和铁可能会放大细胞内氧化应激并加剧疾病过程。这种神经 HO-1 的有害方面在宣传旨在提高中枢 HO-1 表达以管理各种中枢神经系统疾病的生物医学文献中经常被忽视,这是当前综述的重点。提出了一个全面的星形胶质细胞应激模型,其中持续的 Hmox1 诱导促进氧化线粒体膜损伤、铁螯合和自噬(巨自噬)。HO-1 介导的神经胶质病使附近的神经元成分易受氧化损伤,并再现了许多与衰老相关的神经退行性疾病和一些神经发育性脑疾病的“核心”神经病理学特征。平衡的文献应该承认,在许多慢性人类中枢神经系统疾病中,胶质 HO-1 反应可能是有害刺激的强大传感器,是相关神经病理学的重要驱动因素,并且是一种具有潜在疾病修饰作用的治疗靶点。