Suppr超能文献

Comparisons of antibody reactivity and enzyme sensitivity between small proteoglycans from bovine tendon, bone, and cartilage.

作者信息

Vogel K G, Fisher L W

出版信息

J Biol Chem. 1986 Aug 25;261(24):11334-40.

PMID:3525567
Abstract

Preparations of small proteoglycans from bovine tendon, bone, and cartilage have been compared for sensitivity to various enzymes and reactivity with different polyclonal antibodies. Chondroitinase ABC digestion of all proteoglycans generated a core protein preparation that migrated similarly in sodium dodecyl sulfate-polyacrylamide electrophoresis as a doublet band with Mr approximately equal to 45,000. The small proteoglycans of cartilage were divided into two populations based upon electrophoretic migration of the intact molecules (Rosenberg, L. C., Choi, H. U., Tank, L-H., Johnson, T. L., Pal, S., Webber, C., Reiner, A., and Poole, A. R. (1985) J. Biol. Chem. 260, 6304-6313). The core preparations of tendon, bone, and the faster-migrating (PG II) proteoglycans of cartilage all interacted in Western blot/enzyme-linked immunosorbent assay analysis with polyclonal antibody raised against either the tendon or bone proteoglycans. The slower-migrating (PG I) proteoglycans of cartilage did not react with these antibodies. Digestion of the tendon small proteoglycan with Staphylococcus aureus V8 protease released glycosaminoglycan chains from the molecule and generated a 40-kDa protein fragment that was resistant to further rapid degradation by the enzyme. This large digestion fragment was also prominent following V8 protease digestion of the faster-migrating (PG II) population of small cartilage proteoglycans, but not the small proteoglycan of bone. The N-terminal amino acid sequence of the tendon (PG II) proteoglycan was determined. These observations provide additional evidence for heterogeneity among the chemically similar small proteoglycans from different tissues.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验