文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Enhanced thermodynamic, pharmacokinetic and theranostic properties of polymeric micelles via hydrophobic core-clustering of superparamagnetic iron oxide nanoparticles.

作者信息

Jiang Yixin, Lee Junghan, Seo Jin-Myung, Davaa Enkhzaya, Shin Kyung-Ju, Yang Su-Geun

机构信息

Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, B-308, Chungsuk Bldg, 366, Seohae-Daero, Jung-Gu, Incheon, 22212, Republic of Korea.

Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea.

出版信息

Biomater Res. 2022 Mar 7;26(1):8. doi: 10.1186/s40824-022-00255-9.


DOI:10.1186/s40824-022-00255-9
PMID:35256008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8900364/
Abstract

BACKGROUND: Superparamagnetic iron oxide nanoparticles (SPIO) have been applied for decades to design theranostic polymeric micelles for targeted cancer therapy and diagnostic MR imaging. However, the effects of SPIO on the physicochemical, and biological properties of polymeric micelles have not yet been fully elucidated. Therefore, we investigated potential effect of SPIO on the physical and biological properties of theranostic polymeric micelles using representative cancer drug (doxorubicin; Doxo) and polymer carrier (i.e., poly (ethylene glycol)-co-poly(D,L-lactide), PEG-PLA). METHODS: SPIO were synthesized from Fe(acetyl acetonate) in an aryl ether. SPIO and Doxo were loaded into the polymeric micelles by a solvent-evaporation method. We observed the effect of SPIO-clustering on drug loading, micelle size, thermodynamic stability, and theranostic property of PEG-PLA polymeric micelles. In addition, cellular uptake behaviors, pharmacokinetic and biodistribution study were performed. RESULTS: SPIO formed hydrophobic geometric cavity in the micelle core and significantly affected the integrity of micelles in terms of micelle size, Doxo loading, critical micelle concentration (CMC) and in vitro dissociation. In vivo pharmacokinetic studies also showed the enhanced Area Under Curve (AUC) and elongated the half-life of Doxo. CONCLUSIONS: Clustered SPIO in micelles largely affects not only MR imaging properties but also biological and physical properties of polymeric micelles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/8d3215442d8e/40824_2022_255_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/e4a2c6628104/40824_2022_255_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/98e6ceadf1d5/40824_2022_255_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/e536accb6ea0/40824_2022_255_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/4c9096b274af/40824_2022_255_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/907cd5b3a8c4/40824_2022_255_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/a7fca16a842f/40824_2022_255_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/ea2aaa3535b5/40824_2022_255_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/d81a9ba4d145/40824_2022_255_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/8d3215442d8e/40824_2022_255_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/e4a2c6628104/40824_2022_255_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/98e6ceadf1d5/40824_2022_255_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/e536accb6ea0/40824_2022_255_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/4c9096b274af/40824_2022_255_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/907cd5b3a8c4/40824_2022_255_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/a7fca16a842f/40824_2022_255_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/ea2aaa3535b5/40824_2022_255_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/d81a9ba4d145/40824_2022_255_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb25/8900364/8d3215442d8e/40824_2022_255_Fig9_HTML.jpg

相似文献

[1]
Enhanced thermodynamic, pharmacokinetic and theranostic properties of polymeric micelles via hydrophobic core-clustering of superparamagnetic iron oxide nanoparticles.

Biomater Res. 2022-3-7

[2]
Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs.

Biomed Microdevices. 2008-10

[3]
Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging.

Langmuir. 2011-11-11

[4]
pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics.

Acta Biomater. 2017-8

[5]
Superparamagnetic Nanocrystals Clustered Using Poly(ethylene glycol)-Crosslinked Amphiphilic Copolymers for the Diagnosis of Liver Cancer.

Pharmaceutics. 2023-8-25

[6]
Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

Acta Biomater. 2016-4-15

[7]
Comparative studies of poly(ε-caprolactone) and poly(D,L-lactide) as core materials of polymeric micelles.

J Microencapsul. 2012-11-27

[8]
Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI.

Biomaterials. 2011-5-8

[9]
Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging.

ACS Nano. 2010-10-19

[10]
Folate‑targeted polymeric micelles loaded with superparamagnetic iron oxide as a contrast agent for magnetic resonance imaging of a human tongue cancer cell line.

Mol Med Rep. 2017-9-20

引用本文的文献

[1]
Nanomedicine for cancer patient-centered care.

MedComm (2020). 2024-10-20

[2]
Using Hybrid Nanoplatforms to Combine Traditional Anti-Inflammatory Drug Delivery with RNA-Based Therapeutics for Macrophage Reprograming.

Int J Mol Sci. 2024-10-4

[3]
Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[4]
Superparamagnetic Nanocrystals Clustered Using Poly(ethylene glycol)-Crosslinked Amphiphilic Copolymers for the Diagnosis of Liver Cancer.

Pharmaceutics. 2023-8-25

[5]
Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging.

Technol Cancer Res Treat. 2023

[6]
Magnetic Micellar Nanovehicles: Prospects of Multifunctional Hybrid Systems for Precision Theranostics.

Int J Mol Sci. 2022-10-4

本文引用的文献

[1]
T-Positive Mn-Doped Multi-Stimuli Responsive poly(L-DOPA) Nanoparticles for Photothermal and Photodynamic Combination Cancer Therapy.

Biomedicines. 2020-10-14

[2]
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy.

Acta Biomater. 2020-1-15

[3]
Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke.

ACS Nano. 2019-10-11

[4]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[5]
FeO-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management.

Nanomedicine (Lond). 2019-6-19

[6]
A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications.

Acta Biomater. 2018-8-29

[7]
Doxorubicin-Loaded Unimolecular Micelle-Stabilized Gold Nanoparticles as a Theranostic Nanoplatform for Tumor-Targeted Chemotherapy and Computed Tomography Imaging.

Biomacromolecules. 2017-10-26

[8]
T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes.

ACS Appl Mater Interfaces. 2017-10-4

[9]
RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm.

J Magn Reson Imaging. 2017-4

[10]
One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling.

Chem Commun (Camb). 2016-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索