文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金属基诊疗一体化纳米粒子用于癌症治疗和成像的研究进展

Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging.

机构信息

Toronto, ON, Canada.

出版信息

Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231191493. doi: 10.1177/15330338231191493.


DOI:10.1177/15330338231191493
PMID:37642945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10467409/
Abstract

Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.

摘要

治疗诊断试剂具有很大的应用潜力,因为它们能够利用各种成像方式对不同类型的癌症进行诊断、治疗和监测。纳米粒子的优势在于,由于肿瘤附近的血管存在较大的间隙,它们很容易在肿瘤部位聚集。治疗诊断试剂在靶部位的高浓度可以同时增强成像和治疗效果。本文概述了用于癌症治疗诊断的纳米粒子,以及在使用纳米粒子进行癌症治疗诊断时,成像、治疗选择和信号通路的重要性。特别强调了由金属元素制成的纳米粒子,因为它们在癌症治疗诊断中有广泛的应用。本文讨论的一个重要方面是将不同类型的金属结合在一个纳米平台中,作为癌症多模态成像和治疗试剂的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/3cefd0c3b50c/10.1177_15330338231191493-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/e7d1b7ebaa1d/10.1177_15330338231191493-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/edb621749bc3/10.1177_15330338231191493-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/fc57cc59c5ed/10.1177_15330338231191493-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/8cfca47b4e4b/10.1177_15330338231191493-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/8c7940b3a813/10.1177_15330338231191493-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/3edcf0ab0ace/10.1177_15330338231191493-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/58df097ed0f4/10.1177_15330338231191493-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/ac323b200725/10.1177_15330338231191493-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/3cefd0c3b50c/10.1177_15330338231191493-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/e7d1b7ebaa1d/10.1177_15330338231191493-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/edb621749bc3/10.1177_15330338231191493-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/fc57cc59c5ed/10.1177_15330338231191493-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/8cfca47b4e4b/10.1177_15330338231191493-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/8c7940b3a813/10.1177_15330338231191493-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/3edcf0ab0ace/10.1177_15330338231191493-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/58df097ed0f4/10.1177_15330338231191493-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/ac323b200725/10.1177_15330338231191493-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb1/10467409/3cefd0c3b50c/10.1177_15330338231191493-fig9.jpg

相似文献

[1]
Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging.

Technol Cancer Res Treat. 2023

[2]
Stimuli-responsive theranostic system: A promising approach for augmented multimodal imaging and efficient drug release.

Eur J Pharm Biopharm. 2022-8

[3]
Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications.

Chembiochem. 2023-2-14

[4]
Current Perspective in Cancer Theranostics Based on Gold Nanoparticles.

Anticancer Agents Med Chem. 2022

[5]
Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications.

Cancer Imaging. 2024-9-20

[6]
All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics.

Small. 2021-12

[7]
Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics.

Molecules. 2021-5-21

[8]
Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment.

ACS Appl Mater Interfaces. 2021-3-10

[9]
Smart magnetic resonance imaging-based theranostics for cancer.

Theranostics. 2021

[10]
Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications.

Adv Healthc Mater. 2016-7-5

引用本文的文献

[1]
Tuneable carbon dots coated iron oxide nanoparticles as superior contrast agent for multimodal imaging.

ADMET DMPK. 2025-6-18

[2]
Hemoglobin-loaded hollow mesoporous carbon-gold nanocomposites enhance microwave ablation through hypoxia relief.

J Nanobiotechnology. 2025-4-30

[3]
Multifunctional Poly(Acrylic Acid)-Coated EuBiGdO Nanocomposite as an Effective Contrast Agent in Spectral Photon Counting CT, MRI, and Fluorescence Imaging.

Int J Nanomedicine. 2025-4-14

[4]
Fmoc-FF Nanogel-Mediated Delivery of Doxorubicin and Curcumin in Thyroid Cancer Cells.

Pharmaceutics. 2025-2-17

[5]
Advances in Nanotheranostic Systems for Concurrent Cancer Imaging and Therapy: An Overview of the Last 5 Years.

Molecules. 2024-12-19

[6]
Multifunctional gold nanoparticles for cancer theranostics.

3 Biotech. 2024-11

[7]
Cerium Dioxide-Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics.

Molecules. 2024-6-15

本文引用的文献

[1]
PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer.

J Nanobiotechnology. 2022-6-7

[2]
Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade.

Int J Mol Sci. 2022-4-30

[3]
Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging.

RSC Adv. 2018-2-9

[4]
Active targeting drug-gold nanorod hybrid nanoparticles for amplifying photoacoustic signal and enhancing anticancer efficacy.

RSC Adv. 2019-5-1

[5]
Laser activatable perfluorocarbon bubbles for imaging and therapy through enhanced absorption from coupled silica coated gold nanoparticles.

RSC Adv. 2021-1-29

[6]
Enhanced thermodynamic, pharmacokinetic and theranostic properties of polymeric micelles via hydrophobic core-clustering of superparamagnetic iron oxide nanoparticles.

Biomater Res. 2022-3-7

[7]
Recent advances in selective photothermal therapy of tumor.

J Nanobiotechnology. 2021-10-24

[8]
Bombesin Peptide Conjugated Water-Soluble Chitosan Gallate-A New Nanopharmaceutical Architecture for the Rapid One-Pot Synthesis of Prostate Tumor Targeted Gold Nanoparticles.

Int J Nanomedicine. 2021

[9]
Cetuximab-AgS quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells.

Nanoscale. 2021-9-17

[10]
Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling.

Oncogene. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索