Suppr超能文献

葡萄牙首次报道根结线虫寄生甘薯(Ipomoea batatas L.)。

First report of root knot nematodes and parasitizing sweet potato, L., in Portugal.

作者信息

Maleita Carla Maria Nobre, Santos Duarte António Fernandes, Abrantes Isabel Maria de Oliveira, Esteves Ivânia

机构信息

CIEPQPF - Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Coimbra, Portugal, 3030-790;

CFE - Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal, 3000-456;

出版信息

Plant Dis. 2022 Mar 8. doi: 10.1094/PDIS-12-21-2680-PDN.

Abstract

Sweet potato, Ipomoea batatas L., is a tuberous root vegetable rich in low glycemic sugars, vitamins and fibers (Galvão et al., 2021). Although it is widely cropped and consumed in tropical regions, in Europe consumer demand is growing exponentially (CBI, 2021). In Portugal, the production area of sweet potato increased from 588 ha in 2011 to 954 ha in 2017, and exports increased from 2404 tons in 2011 to 13412 tons in 2019 (FAOSTAT, 2021). During a survey carried out in August 2019, sweet potato plants were collected in Almada (38°39'40"N 9°10'54"W) and Belmonte (38°39'40"N 9°10'54"W), South and Centre regions of Portugal, respectively. No symptoms were observed on leaves, however, roots presented numerous galls and/or small spots (females and respective egg masses) were observed in the tuberous root flesh, suggestive of root knot nematodes (RKN, Meloidogyne spp.) infection. At least 8 individual females and respective egg masses were handpicked from roots of each sample and characterized biochemically by electrophoretic analysis of esterases (Pais & Abrantes, 1989). Phenotypes I2 and J3, attributed to M. incognita and M. javanica, respectively, were present in samples from Almada, whereas only phenotype I2 was found from Belmonte sample (Santos et al., 2019). Pure RKN cultures were established on tomato cv. Coração-de-Boi to obtain inoculum for molecular characterization and host suitability assays. Molecular characterization was performed by DNA amplification with M. incognita (Mi-F/Mi-R) and M. javanica (Fjav/Rjav) species-specific primers (Zijlstra et al., 2000; Meng et al., 2004). DNA amplification resulted in unique bands of ≈900 bp and ≈650 bp, respectively, confirming the RKN species identification. The host suitability of sweet potato cvs. Lira (local variety, purple skin, yellow flesh) and Murasaki (purple skin, white/pale to yellow flesh) to M. javanica (Almada) and M. incognita (Belmonte) isolates was assessed. Sweet potato slips with ≈10 cm roots were transplanted to 500 cm3 pots (one slip/pot) and after 2 weeks, each plant was inoculated with 5000 eggs + second-stage juveniles (Pi, initial population density) and maintained in a growth chamber (25±2°C; 12:12 h photoperiod). Tomato cv. Coração-de-Boi was included as a positive control. Each RKN species-plant germplasm combination was repeated 6 times. At 60 days after inoculation, host suitability was evaluated on the basis of root gall index (GI) and reproduction factor (Rf=final population density/Pi) (Sasser et al., 1984). Sweet potato cv. Lira was susceptible (GI=5; Rf=111.8) to M. incognita and resistant (GI=2; Rf=0.11) to M. javanica; while cv. Murasaki was hypersusceptible (GI=5; Rf=0.9) to M. incognita and susceptible (GI=5; Rf=5.5) to M. javanica. Although cultivars varied in their response to M. incognita and M. javanica isolates and variation in the final population density was high, both RKN isolates reproduced in these sweet potato cultivars. In previous studies, cv. Murasaki was considered resistant to M. enterolobii and to M. incognita (La Bonte et al. 2008; Schwarz et al., 2021). Depending on the RKN species, cultivation of cvs. Murasaki and Lira may thus benefit succeeding crops, but they should be combined with other management strategies to further reduce RKN populations in the field. In Portugal, M. incognita and M. javanica have been found associated with economically important horticultural crops, such as tomato and potato, trees and weeds (Santos et al., 2019; Maleita et al., 2021). To our knowledge, these species are reported for the first time parasitizing sweet potato in Portugal and this is the first report on the occurrence of M. incognita and M. javanica infecting sweet potato in Europe. Although findings were not totally unexpected due to the wide distribution and host range of these RKN species, they are of crucial importance since the sweet potato production in Europe has almost doubled from 50 (2011) to 97 thousand tons (2017), with Spain, Portugal, Italy and Greece being the largest producers (FAO, 2021). Our findings also reveal that sweet potato cropped in Portugal have different susceptibility levels to these common RKN species, reinforcing the importance of cultivar selection in RKN management.

摘要

甘薯(Ipomoea batatas L.)是一种块根蔬菜,富含低血糖糖、维生素和纤维(Galvão等人,2021年)。尽管它在热带地区广泛种植和消费,但在欧洲,消费者需求正在呈指数级增长(荷兰对外贸易促进局,2021年)。在葡萄牙,甘薯种植面积从2011年的588公顷增加到2017年的954公顷,出口量从2011年的2404吨增加到2019年的13412吨(联合国粮食及农业组织统计数据库,2021年)。在2019年8月进行的一项调查中,分别从葡萄牙南部和中部地区的阿尔马达(北纬38°39′40″,西经9°10′54″)和贝尔蒙特(北纬38°39′40″,西经9°10′54″)采集了甘薯植株。叶片上未观察到症状,然而,根部出现了大量瘤状物,并且在块根肉质中观察到了小斑点(雌虫和各自的卵块),提示存在根结线虫(RKN,Meloidogyne spp.)感染。从每个样本的根部手工挑选至少8只雌虫和各自的卵块,并通过酯酶的电泳分析进行生化鉴定(Pais和Abrantes,1989年)。阿尔马达样本中存在分别归因于南方根结线虫和爪哇根结线虫的I2和J3表型,而贝尔蒙特样本中仅发现了I2表型(Santos等人,2019年)。在番茄品种“Coracao-de-Boi”上建立了纯根结线虫培养物,以获得用于分子鉴定和寄主适宜性测定的接种物。通过使用南方根结线虫(Mi-F/Mi-R)和爪哇根结线虫(Fjav/Rjav)物种特异性引物进行DNA扩增来进行分子鉴定(Zijlstra等人,2000年;Meng等人,2004年)。DNA扩增分别产生了约900 bp和约650 bp的独特条带,证实了根结线虫物种的鉴定。评估了甘薯品种“Lira”(当地品种,紫皮,黄肉)和“Murasaki”(紫皮,白/淡黄肉)对爪哇根结线虫(阿尔马达分离株)和南方根结线虫(贝尔蒙特分离株)的寄主适宜性。将带有约10厘米根的甘薯嫩枝移植到500立方厘米的花盆中(每盆一株嫩枝),2周后,每株植物接种5000个卵 + 二期幼虫(Pi,初始种群密度),并置于生长室中(25±2°C;12:12小时光周期)。番茄品种“Coracao-de-Boi”作为阳性对照。每个根结线虫物种 - 植物种质组合重复6次。接种后60天,根据根瘤指数(GI)和繁殖因子(Rf = 最终种群密度/Pi)评估寄主适宜性(Sasser等人,1984年)。甘薯品种“Lira”对南方根结线虫敏感(GI = 5;Rf = 111.8),对爪哇根结线虫抗性(GI = 2;Rf = 0.11);而品种“Murasaki”对南方根结线虫高度敏感(GI = 5;Rf = 0.9),对爪哇根结线虫敏感(GI = 5;Rf = 5.5)。尽管品种对南方根结线虫和爪哇根结线虫分离株的反应不同,且最终种群密度变化很大,但两种根结线虫分离株都能在这些甘薯品种中繁殖。在先前的研究中,品种“Murasaki”被认为对花生根结线虫和南方根结线虫具有抗性(La Bonte等人,2008年;Schwarz等人,2021年)。因此,根据根结线虫物种的不同,种植“Murasaki”和“Lira”品种可能对后续作物有益,但应结合其他管理策略以进一步减少田间根结线虫种群数量。在葡萄牙,已发现南方根结线虫和爪哇根结线虫与经济上重要的园艺作物有关,如番茄和马铃薯、树木和杂草(Santos等人,2019年;Maleita等人,2021年)。据我们所知,这些物种在葡萄牙首次被报道寄生于甘薯,这也是欧洲首次关于南方根结线虫和爪哇根结线虫感染甘薯的报道。尽管由于这些根结线虫物种的广泛分布和寄主范围,这些发现并非完全出乎意料,但它们至关重要,因为欧洲的甘薯产量已从2011年的5万吨几乎翻了一番,达到2017年的9.7万吨,西班牙、葡萄牙、意大利和希腊是最大的生产国(联合国粮食及农业组织)。我们的研究结果还表明,在葡萄牙种植的甘薯对这些常见根结线虫物种具有不同的敏感水平,这强化了在根结线虫管理中品种选择的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验