Suppr超能文献

结合多变量模式分析与频率依赖的脑内固有活动以识别特发性震颤。

Combined multivariate pattern analysis with frequency-dependent intrinsic brain activity to identify essential tremor.

作者信息

Zhang Xiaoyu, Chen Huiyue, Tao Li, Zhang Xueyan, Wang Hansheng, He Wanlin, Li Qin, Xiao Pan, Xu Bintao, Gui Honge, Lv Fajin, Luo Tianyou, Man Yun, Xiao Zheng, Fang Weidong

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Neurosci Lett. 2022 Apr 17;776:136566. doi: 10.1016/j.neulet.2022.136566. Epub 2022 Mar 5.

Abstract

Essential tremor (ET) is the most common tremor disorder, and the intrinsic brain activity changes and diagnostic biomarkers of ET remain unclear. Combined multivariate pattern analysis (MVPA) with resting-state functional MRI (Rs-fMRI) data provides the most promising way to identify individual subjects, reveal brain activity changes, and further establish diagnostic biomarkers in neurological diseases. Using voxel-level amplitude of low-frequency fluctuations (ALFF) and local (regional homogeneity, ReHo) and global (degree centrality, DC) brain connectivity mappings based on three frequency bands (classical band: 0.01-0.10 Hz; slow-5: 0.01-0.023 Hz; slow-4: 0.023-0.073 Hz) of 162 ET patients and 153 well-matched healthy controls (HCs) as input features, MVPA (binary support vector machine, SVM) was performed to differentiate ET from HCs. Each modality achieved good classification performance, except for ReHo based on the slow-4 band with a sensitivity, specificity and total accuracy of 58.64%, 65.36%, 61.90%, respectively (P < 0.05). The classification performance with slow-4 bands was poorer than that with slow-5 and classical bands, but slow-4 bands could be used to reveal the spatial distribution changes in subcortical structures, especially the thalamus. The significant discriminative features were mostly located in the cerebello-thalamo-cortical pathway, and partial correlation analyses showed that significant discriminative features in the cerebello-thalamo-cortical pathway could be used to explain the clinical features of tremor in ET patients. Our findings revealed that voxel-level frequency-dependent ALFF, ReHo and DC could be used to discriminate ET from HCs and help to reveal intrinsic brain activity changes, further acting as potential diagnostic biomarkers.

摘要

特发性震颤(ET)是最常见的震颤疾病,而ET的脑内固有活动变化和诊断生物标志物仍不明确。将多变量模式分析(MVPA)与静息态功能磁共振成像(Rs-fMRI)数据相结合,为识别个体受试者、揭示脑活动变化以及进一步建立神经疾病的诊断生物标志物提供了最具前景的方法。基于三个频段(经典频段:0.01 - 0.10Hz;慢波5:0.01 - 0.023Hz;慢波4:0.023 - 0.073Hz),对162例ET患者和153例匹配良好的健康对照(HCs)进行体素级低频波动幅度(ALFF)、局部(局部一致性,ReHo)和全局(度中心性,DC)脑连接映射,并将其作为输入特征,采用MVPA(二元支持向量机,SVM)对ET和HCs进行区分。除基于慢波4频段的ReHo外,各模态均取得了良好的分类性能,其敏感性、特异性和总准确率分别为58.64%、65.36%、61.90%(P < 0.05)。慢波4频段的分类性能低于慢波5频段和经典频段,但慢波4频段可用于揭示皮层下结构尤其是丘脑的空间分布变化。显著的判别特征大多位于小脑 - 丘脑 - 皮质通路,偏相关分析表明,小脑 - 丘脑 - 皮质通路中的显著判别特征可用于解释ET患者震颤的临床特征。我们的研究结果表明,体素级频率依赖性ALFF、ReHo和DC可用于区分ET和HCs,并有助于揭示脑内固有活动变化,进而作为潜在的诊断生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验