Department of Radiology, Herlev and Gentofte Hospital, Denmark; Department of Radiology, Bispebjerg and Frederiksberg Hospital, Denmark.
Department of Radiology, Herlev and Gentofte Hospital, Denmark.
Eur J Radiol. 2022 May;150:110216. doi: 10.1016/j.ejrad.2022.110216. Epub 2022 Feb 26.
The primary aim was to investigate the diagnostic performance of an Artificial Intelligence (AI) algorithm for pneumoperitoneum detection in patients with acute abdominal pain who underwent an abdominal CT scan.
This retrospective diagnostic test accuracy study used a consecutive patient cohort from the Acute High-risk Abdominal patient population at Herlev and Gentofte Hospital, Denmark between January 1, 2019 and September 25, 2019. As reference standard, all studies were rated for pneumoperitoneum (subgroups: none, small, medium, and large amounts) by a gastrointestinal radiology consultant. The index test was a novel AI algorithm based on a sliding window approach with a deep recurrent neural network at its core. The primary outcome was the area under the curve (AUC) of the receiver operating characteristic (ROC).
Of 331 included patients (median age 68 years (Range 19-100; 180 women)) 31 patients (9%) had pneumoperitoneum (large: 16, moderate: 7, small: 8). The AUC was 0.77 (95% CI 0.66-0.87). At a specificity of 99% (297/300, 95% CI: 97-100%), sensitivity was 52% (16/31, 95% CI 29-65%), and positive likelihood ratio was 52 (95% CI 16-165). When excluding cases with smaller amounts of free air (<0.25 mL) the AUC increased to 0.96 (95% CI 0.89-1.0). At 99% specificity, sensitivity was 81% (13/16) and positive likelihood ratio was 82 (95% CI 27 - 254).
An AI algorithm identified pneumoperitoneum on CT scans in a clinical setting with low sensitivity but very high specificity, supporting its role for ruling in pneumoperitoneum.
本研究旨在评估一种人工智能(AI)算法在检测因急性腹痛而行腹部 CT 扫描的患者中是否存在气腹的诊断性能。
这是一项回顾性诊断准确性研究,使用了丹麦 Herlev 和 Gentofte 医院的急性高危腹部患者队列中的连续患者人群,纳入时间为 2019 年 1 月 1 日至 2019 年 9 月 25 日。以胃肠放射学顾问对气腹(亚组:无、小、中、大量)的评估作为参考标准。该研究的指标检测是一种新型的 AI 算法,基于带有深度递归神经网络的滑动窗口方法。主要结果是受试者工作特征(ROC)曲线下的面积(AUC)。
在纳入的 331 名患者中(中位年龄 68 岁(范围 19-100;180 名女性)),31 名患者(9%)存在气腹(大量:16 例,中量:7 例,小量:8 例)。AUC 为 0.77(95%CI 0.66-0.87)。在特异性为 99%(297/300,95%CI:97-100%)时,敏感性为 52%(16/31,95%CI 29-65%),阳性似然比为 52(95%CI 16-165)。当排除较小量游离气(<0.25ml)的病例时,AUC 增加至 0.96(95%CI 0.89-1.0)。当特异性为 99%时,敏感性为 81%(13/16),阳性似然比为 82(95%CI 27-254)。
在临床环境中,AI 算法可以识别 CT 扫描中的气腹,但敏感性较低,特异性很高,支持其用于气腹的诊断。