Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France.
Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France.
Sci Rep. 2022 Mar 8;12(1):4051. doi: 10.1038/s41598-022-07771-7.
Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.
子宫内膜异位症的特征是子宫内膜样组织出现在子宫外,据认为影响了 2-10%的育龄妇女:代表了全球约 1.9 亿妇女。许多研究已经评估了血液生物标志物的诊断价值,但结果令人失望。因此,诊断子宫内膜异位症的金标准仍然是腹腔镜检查。我们进行了一项前瞻性试验,即 ENDO-miRNA 研究,使用人工智能 (AI) 和机器学习 (ML) 来分析当前的人类 miRNA 组,以区分有和没有子宫内膜异位症的患者,并开发一种基于血液的 microRNA (miRNA) 诊断特征用于子宫内膜异位症。在这里,我们提出了第一个基于血液的诊断特征,该特征是由两种强大且具有颠覆性的技术结合而成的,将 miRNA 的固有质量与人工智能的建模能力相结合,以浓缩子宫内膜异位症表型(及其异质性)。最准确的特征分别提供了 96.8%、100%和 98.4%的灵敏度、特异性和曲线下面积 (AUC),并且足够稳健和可重复,可替代诊断手术的金标准。对于这种使人衰弱的疾病,这种诊断方法可能会影响国家和国际学术协会的建议。