Suppr超能文献

晚期内体ClC-6引起的缓慢激活的氯离子-质子反向转运体电压依赖性改变解释了不同的神经疾病。

Altered voltage-dependence of slowly activating chloride-proton antiport by late endosomal ClC-6 explains distinct neurological disorders.

作者信息

Zifarelli Giovanni, Pusch Michael, Fong Peying

机构信息

Institute of Biophysics, CNR, Genoa, Italy.

Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA.

出版信息

J Physiol. 2022 May;600(9):2147-2164. doi: 10.1113/JP282737. Epub 2022 Mar 30.

Abstract

ClC-6 is an intracellularly localised member of the CLC family of chloride transport proteins. It presumably functions in the endolysosomal compartment as a chloride-proton antiporter, despite a paucity of biophysical studies in direct support. Observations of lysosomal storage disease, as well as neurodegenerative disorders, emerge with its disruption by knockout or mutation, respectively. An incomplete understanding of wild-type ClC-6 function obscures clear mechanistic insight into disease aetiology. Here, high-resolution recording protocols that incorporate extreme voltage pulses permit detailed biophysical measurement and analysis of transient capacitive, as well as ionic transport currents. This approach reveals that wild-type ClC-6 activation and transport require depolarisation to voltages beyond 140 mV. Mutant Y553C associated with early-onset neurodegeneration exerts gain-of-function by shifting the half-maximal voltage for activation to less depolarised voltages. Moreover, we show that the E267A proton glutamate mutant conserves transport currents, albeit reduced. Lastly, the positive shift in activation voltage shown by V580M, a mutant identified in a patient with late-onset lysosomal storage disease, can explain loss-of-function leading to disease. KEY POINTS: Ionic composition and pH within intracellular compartments, such as endolysosomes, rely on the activity of chloride/proton transporters including ClC-6. Distinct CLCN6 mutations were previously found in individuals with neurodegenerative disease, and also putatively associated with neuronal ceroid lipofuscinosis. Limited knowledge of wild-type ClC-6 transport function impedes understanding of mechanisms underlying these conditions. We resolved transient and transport currents that permit measurement of voltage- and pH-dependences, as well as kinetics, for wild-type and disease-associated mutant ClC-6s. These findings define wild-type ClC-6 function robustly, and reveal how alterations of the slow activation gating of the transporter cause different kinds of neurological diseases.

摘要

ClC-6是氯化物转运蛋白CLC家族的细胞内定位成员。尽管缺乏直接支持的生物物理研究,但推测它在内溶酶体区室中作为氯化物-质子反向转运体发挥作用。分别通过基因敲除或突变破坏ClC-6后,出现了溶酶体贮积病以及神经退行性疾病的相关观察结果。对野生型ClC-6功能的不完全理解掩盖了对疾病病因的清晰机制洞察。在这里,结合极端电压脉冲的高分辨率记录方案允许对瞬态电容电流以及离子传输电流进行详细的生物物理测量和分析。这种方法表明,野生型ClC-6的激活和转运需要去极化至超过140 mV的电压。与早发性神经退行性疾病相关的突变体Y553C通过将激活的半数最大电压转移到去极化程度较小的电压而发挥功能获得。此外,我们表明E267A质子谷氨酸突变体尽管电流减少,但仍保留转运电流。最后,在迟发性溶酶体贮积病患者中鉴定出的突变体V580M所显示的激活电压正移可以解释导致疾病的功能丧失。要点:细胞内区室(如内溶酶体)中的离子组成和pH值依赖于包括ClC-6在内的氯化物/质子转运体的活性。先前在患有神经退行性疾病的个体中发现了不同的CLCN6突变,并且推测也与神经元蜡样脂褐质沉积症有关。对野生型ClC-6转运功能的了解有限,阻碍了对这些病症潜在机制的理解。我们解析了瞬态电流和转运电流,从而能够测量野生型和疾病相关突变体ClC-6的电压依赖性、pH依赖性以及动力学。这些发现有力地定义了野生型ClC-6的功能,并揭示了转运体缓慢激活门控的改变如何导致不同类型的神经疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验