Suppr超能文献

基于胸部计算机断层扫描的影像组学用于鉴别纯磨玻璃影中微浸润腺癌与前驱病变

Radiomics for differentiating minimally invasive adenocarcinoma from precursor lesions in pure ground-glass opacities on chest computed tomography.

作者信息

Zhu Yan-Qiu, Liu Chaohui, Mo Yan, Dong Hao, Huang Chencui, Duan Ya-Ni, Tang Lei-Lei, Chu Yuan-Yuan, Qin Jie

机构信息

Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, China.

Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co. Ltd, Beijing, China.

出版信息

Br J Radiol. 2022 Jun 1;95(1134):20210768. doi: 10.1259/bjr.20210768. Epub 2022 Mar 18.

Abstract

OBJECTIVE

To explore the correlation between radiomic features and the pathology of pure ground-glass opacities (pGGOs), we established a radiomics model for predicting the pathological subtypes of minimally invasive adenocarcinoma (MIA) and precursor lesions.

METHODS

CT images of 1521 patients with lung adenocarcinoma or precursor lesions appearing as pGGOs on CT in our hospital (The Third Affiliated Hospital of Sun Yat-sen University) from January 2015 to March 2021 were analyzed retrospectively and selected based on inclusion and exclusion criteria. pGGOs were divided into an atypical adenomatous hyperplasia (AAH)/adenocarcinoma (AIS) group and an MIA group. Radiomic features were extracted from the original and preprocessed images of the region of interest. ANOVA and least absolute shrinkage and selection operator feature selection algorithm were used for feature selection. Logistic regression algorithm was used to construct radiomics prediction model. Receiver operating characteristic curves were used to evaluate the classification efficiency.

RESULTS

129 pGGOs were included. 2107 radiomic features were extracted from each region of interest. 18 radiomic features were eventually selected for model construction. The area under the curve of the radiomics model was 0.884 [95% confidence interval (CI), 0.818-0.949] in the training set and 0.872 (95% CI, 0.756-0.988) in the test set, with a sensitivity of 72.73%, specificity of 88.24% and accuracy of 79.47%. The decision curve indicated that the model had a high net benefit rate.

CONCLUSION

The prediction model for pathological subtypes of MIA and precursor lesions in pGGOs demonstrated a high diagnostic accuracy.

ADVANCES IN KNOWLEDGE

We focused on lesions appearing as pGGOs on CT and revealed the differences in radiomic features between MIA and precursor lesions. We constructed a radiomics prediction model and improved the diagnostic accuracy for the pathology of MIA and precursor lesions.

摘要

目的

为探讨影像组学特征与纯磨玻璃结节(pGGO)病理之间的相关性,我们建立了一个预测微浸润腺癌(MIA)及其前驱病变病理亚型的影像组学模型。

方法

回顾性分析2015年1月至2021年3月在我院(中山大学附属第三医院)就诊的1521例肺腺癌或前驱病变患者的CT图像,这些病变在CT上表现为pGGO,并根据纳入和排除标准进行筛选。将pGGO分为非典型腺瘤样增生(AAH)/原位腺癌(AIS)组和MIA组。从感兴趣区域的原始图像和预处理图像中提取影像组学特征。采用方差分析和最小绝对收缩和选择算子特征选择算法进行特征选择。使用逻辑回归算法构建影像组学预测模型。采用受试者工作特征曲线评估分类效能。

结果

纳入129个pGGO。从每个感兴趣区域提取了2107个影像组学特征。最终选择18个影像组学特征用于模型构建。影像组学模型在训练集的曲线下面积为0.884[95%置信区间(CI),0.818 - 0.949],在测试集为0.872(95%CI,0.756 - 0.988),灵敏度为72.73%,特异度为88.24%,准确度为79.47%。决策曲线表明该模型具有较高的净效益率。

结论

pGGO中MIA及其前驱病变病理亚型的预测模型显示出较高的诊断准确性。

知识进展

我们聚焦于CT上表现为pGGO的病变,揭示了MIA与其前驱病变在影像组学特征上的差异。我们构建了影像组学预测模型,提高了MIA及其前驱病变病理诊断的准确性。

相似文献

5
A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules.
Clin Radiol. 2021 Feb;76(2):143-151. doi: 10.1016/j.crad.2020.10.005. Epub 2020 Nov 10.
10
CT findings of persistent pure ground glass opacity: can we predict the invasiveness?
Asian Pac J Cancer Prev. 2015;16(5):1925-8. doi: 10.7314/apjcp.2015.16.5.1925.

本文引用的文献

1
A CT-Based Radiomics Approach to Predict Nivolumab Response in Advanced Non-Small-Cell Lung Cancer.
Front Oncol. 2021 Feb 24;11:544339. doi: 10.3389/fonc.2021.544339. eCollection 2021.
2
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
3
Natural history of pathologically confirmed pulmonary subsolid nodules with deep learning-assisted nodule segmentation.
Eur Radiol. 2021 Jun;31(6):3884-3897. doi: 10.1007/s00330-020-07450-z. Epub 2020 Nov 21.
4
A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules.
Clin Radiol. 2021 Feb;76(2):143-151. doi: 10.1016/j.crad.2020.10.005. Epub 2020 Nov 10.
5
Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma.
Front Oncol. 2020 Aug 11;10:872. doi: 10.3389/fonc.2020.00872. eCollection 2020.
7
Development of a machine learning-based multimode diagnosis system for lung cancer.
Aging (Albany NY). 2020 May 23;12(10):9840-9854. doi: 10.18632/aging.103249.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验