Suppr超能文献

利用混合特征表示法鉴定肿瘤归巢肽。

Identification of tumor homing peptides by utilizing hybrid feature representation.

机构信息

School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China.

出版信息

J Biomol Struct Dyn. 2023 May;41(8):3405-3412. doi: 10.1080/07391102.2022.2049368. Epub 2022 Mar 9.

Abstract

Cancer is one of the serious diseases, recent studies reported that tumor homing peptides (THPs) play a key role in treatment of cancer. Due to the experimental methods are time-consuming and expensive, it is urgent to develop automatic computational approaches to identify THPs. Hence, in this study, we proposed a novel machine learning methods to distinguish THPs from non-THPs, in which the peptide sequences firstly encoded by pseudo residue pairwise energy content matrix (PseRECM) and pseudo physicochemical property (PsePC). Moreover, the least absolute shrinkage and selection operator (LAASO) was employed to select optimal features from the extracted features. All of these selected features were fed into support vector machine (SVM) for identifying THPs. We achieved 89.02%, 88.49%, and 94.58% classification accuracy on the Main, Small, and Main90 dataset, respectively. Experimental results showed that our proposed method outperforms the existing predictors on the same benchmark datasets. It indicates that the proposed method may be a useful tool in identifying THPs. The datasets and codes used in current study are available at https://figshare.com/articles/online_resource/iTHPs/16778770.Communicated by Ramaswamy H. Sarma.

摘要

癌症是一种严重的疾病,最近的研究报告称,肿瘤归巢肽(THP)在癌症治疗中起着关键作用。由于实验方法既耗时又昂贵,因此迫切需要开发自动计算方法来识别 THP。因此,在这项研究中,我们提出了一种新的机器学习方法,用于区分 THP 和非 THP,其中肽序列首先由伪残基对能量含量矩阵(PseRECM)和伪物理化学特性(PsePC)编码。此外,最小绝对收缩和选择算子(LAASO)用于从提取的特征中选择最佳特征。所有这些选择的特征都被输入支持向量机(SVM)中以识别 THP。我们在 Main、Small 和 Main90 数据集上分别实现了 89.02%、88.49%和 94.58%的分类精度。实验结果表明,与相同的基准数据集上的现有预测器相比,我们提出的方法表现更好。这表明该方法可能是识别 THP 的有用工具。本研究中使用的数据集和代码可在 https://figshare.com/articles/online_resource/iTHPs/16778770 上获得。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验