Suppr超能文献

iTTCA-MFF:基于多特征融合的肿瘤 T 细胞抗原识别。

iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion.

机构信息

School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330003, China.

出版信息

Immunogenetics. 2022 Oct;74(5):447-454. doi: 10.1007/s00251-022-01258-5. Epub 2022 Mar 5.

Abstract

Cancer is a terrible disease, recent studies reported that tumor T cell antigens (TTCAs) may play a promising role in cancer treatment. Since experimental methods are still expensive and time-consuming, it is highly desirable to develop automatic computational methods to identify tumor T cell antigens from the huge amount of natural and synthetic peptides. Hence, in this study, a novel computational model called iTTCA-MFF was proposed to identify TTCAs. In order to describe the sequence effectively, the physicochemical (PC) properties of amino acid and residue pairwise energy content matrix (RECM) were firstly employed to encode peptide sequences. Then, two different approaches including covariance and Pearson's correlation coefficient (PCC) were used to collect discriminative information from PC and RECM matrixes. Next, an effective feature selection approach called the least absolute shrinkage and selection operator (LAASO) was adopted to select the optimal features. These selected optimal features were fed into support vector machine (SVM) for identifying TTCAs. We performed experiments on two different datasets, experimental results indicated that the proposed method is promising and may play a complementary role to the existing methods for identifying TTCAs. The datasets and codes can be available at https://figshare.com/articles/online_resource/iTTCA-MFF/17636120 .

摘要

癌症是一种可怕的疾病,最近的研究报告称,肿瘤 T 细胞抗原(TTCAs)可能在癌症治疗中发挥有希望的作用。由于实验方法仍然昂贵且耗时,因此非常需要开发自动计算方法来从大量天然和合成肽中识别肿瘤 T 细胞抗原。因此,在这项研究中,提出了一种称为 iTTCA-MFF 的新型计算模型来识别 TTCAs。为了有效地描述序列,首先使用氨基酸的理化(PC)特性和残基成对能量含量矩阵(RECM)对肽序列进行编码。然后,使用协方差和 Pearson 相关系数(PCC)两种不同的方法从 PC 和 RECM 矩阵中收集有区别的信息。接下来,采用一种有效的特征选择方法称为最小绝对收缩和选择算子(LAASO)来选择最佳特征。这些选择的最佳特征被输入支持向量机(SVM)中以识别 TTCAs。我们在两个不同的数据集上进行了实验,实验结果表明,该方法具有很大的潜力,可以作为现有 TTCAs 识别方法的补充。数据集和代码可在 https://figshare.com/articles/online_resource/iTTCA-MFF/17636120 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验