Suppr超能文献

基于深度学习的膝关节骨关节炎自动检测与分类。

Automatic detection and classification of knee osteoarthritis using deep learning approach.

机构信息

Department of Electronics and Communication, Kalasalingam Academy of Research and Education, Srivilliputhur, India.

出版信息

Radiol Med. 2022 Apr;127(4):398-406. doi: 10.1007/s11547-022-01476-7. Epub 2022 Mar 9.

Abstract

PURPOSE

We developed a tool for locating and grading knee osteoarthritis (OA) from digital X-ray images and illustrate the possibility of deep learning techniques to predict knee OA as per the Kellgren-Lawrence (KL) grading system. The purpose of the project is to see how effectively an artificial intelligence (AI)-based deep learning approach can locate and diagnose the severity of knee OA in digital X-ray images.

METHODS

Selection criteria: Patients above 50 years old with OA symptoms (knee joint pain, stiffness, crepitus, and functional limitations) were included in the study. Medical experts excluded patients with post-surgical evaluation, trauma, and infection from the study. We used 3172 Anterior-posterior view knee joint digital X-ray images. We have trained the Faster RCNN architecture to locate the knee joint space width (JSW) region in digital X-ray images and we incorporate ResNet-50 with transfer learning to extract the features. We have used another pre-trained network (AlexNet with transfer learning) for the classification of knee OA severity. We trained the region proposal network (RPN) using manual extract knee area as the ground truth image and the medical experts graded the knee joint digital X-ray images based on the Kellgren-Lawrence score. An X-ray image is an input for the final model, and the output is a Kellgren-Lawrence grading value.

RESULTS

The proposed model identified the minimal knee JSW area with a maximum accuracy of 98.516%, and the overall knee OA severity classification accuracy was 98.90%.

CONCLUSIONS

Today numerous diagnostic methods are available, but tools are not transparent and automated analysis of OA remains a problem. The performance of the proposed model increases while fine-tuning the network and it is higher than the existing works. We will extend this work to grade OA in MRI data in the future.

摘要

目的

我们开发了一种从数字 X 射线图像中定位和分级膝关节骨关节炎(OA)的工具,并举例说明了深度学习技术预测基于 Kellgren-Lawrence(KL)分级系统的膝关节 OA 的可能性。该项目的目的是观察基于人工智能(AI)的深度学习方法在数字 X 射线图像中定位和诊断膝关节 OA 的严重程度的有效性。

方法

选择标准:纳入研究的患者为年龄在 50 岁以上、有 OA 症状(膝关节疼痛、僵硬、弹响和功能受限)的患者。医学专家排除了术后评估、创伤和感染的患者。我们使用了 3172 张前后位膝关节数字 X 射线图像。我们使用 Faster RCNN 架构来定位数字 X 射线图像中的膝关节间隙宽度(JSW)区域,并使用 ResNet-50 进行迁移学习以提取特征。我们使用另一个预训练网络(带迁移学习的 AlexNet)对膝关节 OA 严重程度进行分类。我们使用手动提取的膝关节区域作为 Ground Truth 图像来训练区域提议网络(RPN),并由医学专家根据 Kellgren-Lawrence 评分对膝关节数字 X 射线图像进行分级。X 射线图像是最终模型的输入,输出是 Kellgren-Lawrence 分级值。

结果

所提出的模型以 98.516%的最大精度识别最小的膝关节 JSW 区域,整体膝关节 OA 严重程度分类准确性为 98.90%。

结论

目前有许多诊断方法,但这些工具不透明,OA 的自动分析仍然是一个问题。通过对网络进行微调,提出的模型的性能得到了提高,并且高于现有工作。我们将在未来扩展这项工作,以对 MRI 数据中的 OA 进行分级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验