Suppr超能文献

基于深度学习的集成网络用于膝关节 X 射线图像的自动骨关节炎分级。

Ensemble deep-learning networks for automated osteoarthritis grading in knee X-ray images.

机构信息

Division of AI and Computer Engineering, Kyonggi University, Suwon, Republic of Korea.

Department of Radiology, Keimyung University Dongsan Hospital, Daegu, Republic of Korea.

出版信息

Sci Rep. 2023 Dec 21;13(1):22887. doi: 10.1038/s41598-023-50210-4.

Abstract

The Kellgren-Lawrence (KL) grading system is a scoring system for classifying the severity of knee osteoarthritis using X-ray images, and it is the standard X-ray-based grading system for diagnosing knee osteoarthritis. However, KL grading depends on the clinician's subjective assessment. Moreover, the accuracy varies significantly depending on the clinician's experience and can be particularly low. Therefore, in this study, we developed an ensemble network that can predict a consistent and accurate KL grade for knee osteoarthritis severity using a deep learning approach. We trained individual models on knee X-ray datasets using the most suitable image size for each model in an ensemble network rather than using datasets with a single image size. We then built the ensemble network using these models to overcome the instability of single models and further improve accuracy. We conducted various experiments using a dataset of 8260 images from the Osteoarthritis Initiative open dataset. The proposed ensemble network exhibited the best performance, achieving an accuracy of 76.93% and an F1-score of 0.7665. The Grad-CAM visualization technique was used to further evaluate the focus of the model. The results demonstrated that the proposed ensemble network outperforms existing techniques that have performed well in KL grade classification. Moreover, the proposed model focuses on the joint space around the knee to extract the imaging features required for KL grade classification, revealing its high potential for diagnosing knee osteoarthritis.

摘要

Kellgren-Lawrence (KL) 分级系统是一种用于通过 X 射线图像对膝关节骨关节炎严重程度进行分类的评分系统,是诊断膝关节骨关节炎的标准 X 射线分级系统。然而,KL 分级依赖于临床医生的主观评估。此外,其准确性差异很大,取决于临床医生的经验,并且可能特别低。因此,在这项研究中,我们开发了一种集成网络,可以使用深度学习方法预测膝关节骨关节炎严重程度的一致且准确的 KL 等级。我们使用适合于集成网络中每个模型的最佳图像大小在膝关节 X 射线数据集上训练各个模型,而不是使用具有单一图像大小的数据集。然后,我们使用这些模型构建集成网络,以克服单个模型的不稳定性并进一步提高准确性。我们使用来自 Osteoarthritis Initiative 开放数据集的 8260 张图像的数据集进行了各种实验。所提出的集成网络表现出最佳性能,达到了 76.93%的准确率和 0.7665 的 F1 分数。使用 Grad-CAM 可视化技术进一步评估了模型的重点。结果表明,所提出的集成网络优于在 KL 分级分类中表现良好的现有技术。此外,所提出的模型专注于膝关节周围的关节间隙,提取 KL 分级分类所需的成像特征,表明其在诊断膝关节骨关节炎方面具有很高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45fd/10739741/bdf2e9152265/41598_2023_50210_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验