Department of Biology, Indiana University, Bloomington, IN, USA.
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Nat Commun. 2022 Mar 9;13(1):1229. doi: 10.1038/s41467-022-28715-9.
Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC.
土壤生物地球化学的概念和经验进展挑战了长期以来关于土壤微生物在土壤有机碳 (SOC) 动态中作用的假设;然而,对于新兴概念的严格检验仍然很少。最近的假说表明,微生物残体生产将植物输入与 SOC 积累联系起来,高质量(即快速分解)的植物凋落物促进微生物碳利用效率、生长和周转,从而导致更多的微生物残体矿化稳定。我们使用稳定同位素来测量微生物特性和 SOC 动态,通过在六个美国东部森林中的实验和观察来检验这一假说。在这里,我们在两个研究中都表明,微生物的生长、效率和周转与矿物结合的 SOC 呈负相关(而不是正相关)。在实验中,高质量凋落物刺激微生物生长会增强 SOC 分解,从而抵消了凋落物质量对 SOC 稳定的积极影响。我们认为,微生物残体生产并不是温带森林中 SOC 持久性的主要驱动因素。微生物残体的来源、替代的 SOC 形成途径、激发效应和土壤非生物特性等因素可以使微生物的生长、效率和周转与矿物结合的 SOC 强烈脱钩。