文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过用烷基化甜菜碱离子液体进行化学修饰提高南极假丝酵母脂肪酶B的催化性能

Enhancing the Catalytic Performance of Candida antarctica Lipase B by Chemical Modification With Alkylated Betaine Ionic Liquids.

作者信息

Xue Yu, Zhang Xiao-Guang, Lu Ze-Ping, Xu Chao, Xu Hua-Jin, Hu Yi

机构信息

School of Pharmaceutical Sciences, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.

出版信息

Front Bioeng Biotechnol. 2022 Feb 21;10:850890. doi: 10.3389/fbioe.2022.850890. eCollection 2022.


DOI:10.3389/fbioe.2022.850890
PMID:35265607
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8899502/
Abstract

Various betaine ionic liquids composed of different chain lengths and different anions were designed and synthesized to modify lipase B (CALB). The results showed that the catalytic activity of all modified lipases improved under different temperature and pH conditions, while also exhibiting enhanced thermostability and tolerance to organic solvents. With an increase in ionic liquid chain length, the modification effect was greater. Overall, CALB modified by [BetaineC][HPO] performed best, with the modified CALB enzyme activity increased 3-fold, thermal stability increased 1.5-fold when stored at 70°C for 30 min, with tolerance increased 2.9-fold in 50% DMSO and 2.3-fold in 30% mercaptoethanol. Fluorescence and circular dichroism (CD) spectroscopic analysis showed that the introduction of an ionic liquid caused changes in the microenvironment surrounding some fluorescent groups and the secondary structure of the CALB enzyme protein. In order to establish the enzyme activity and stability change mechanisms of the modified CALB, the structures of CALB modified with [BetaineC][Cl] and [BetaineC][Cl] were constructed, while the reaction mechanisms were studied by molecular dynamics simulations. Results showed that the root mean square deviation (RMSD) and total energy of modified CALB were less than those of native CALB, indicating that modified CALB has a more stable structure. Root mean square fluctuation (RMSF) calculations showed that the rigidity of modified CALB was enhanced. Solvent accessibility area (SASA) calculations exhibited that both the hydrophilicity and hydrophobicity of the modified enzyme-proteins were improved. The increase in radial distribution function (RDF) of water molecules confirmed that the number of water molecules around the active sites also increased. Therefore, modified CALB has enhanced structural stability and higher hydrolytic activity.

摘要

设计并合成了由不同链长和不同阴离子组成的多种甜菜碱离子液体,用于修饰脂肪酶B(CALB)。结果表明,所有修饰后的脂肪酶在不同温度和pH条件下催化活性均有所提高,同时还表现出增强的热稳定性和对有机溶剂的耐受性。随着离子液体链长的增加,修饰效果更佳。总体而言,用[BetaineC][HPO]修饰的CALB表现最佳,修饰后的CALB酶活性提高了3倍,在70°C下储存30分钟时热稳定性提高了1.5倍,在50%二甲基亚砜中的耐受性提高了2.9倍,在30%巯基乙醇中的耐受性提高了2.3倍。荧光和圆二色性(CD)光谱分析表明,离子液体的引入导致了CALB酶蛋白周围一些荧光基团的微环境和二级结构发生变化。为了建立修饰后CALB的酶活性和稳定性变化机制,构建了用[BetaineC][Cl]和[BetaineC][Cl]修饰的CALB的结构,同时通过分子动力学模拟研究了反应机制。结果表明,修饰后CALB的均方根偏差(RMSD)和总能量均小于天然CALB,表明修饰后CALB具有更稳定的结构。均方根波动(RMSF)计算表明,修饰后CALB的刚性增强。溶剂可及表面积(SASA)计算表明,修饰后的酶蛋白的亲水性和疏水性均得到改善。水分子径向分布函数(RDF)的增加证实了活性位点周围水分子的数量也增加了。因此,修饰后CALB具有增强的结构稳定性和更高的水解活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/2e44b4db133a/fbioe-10-850890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/168b1cb3a5dc/fbioe-10-850890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/e5426f84bce3/fbioe-10-850890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/f839abcb2ad9/fbioe-10-850890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/7013305e94fe/fbioe-10-850890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/f5ebd16e3a8a/fbioe-10-850890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/abc53d0c765e/fbioe-10-850890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/3d2169c4cbe8/fbioe-10-850890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/5dc5ba4ab356/fbioe-10-850890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/7fd39e12745d/fbioe-10-850890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/a470e179074a/fbioe-10-850890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/2e44b4db133a/fbioe-10-850890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/168b1cb3a5dc/fbioe-10-850890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/e5426f84bce3/fbioe-10-850890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/f839abcb2ad9/fbioe-10-850890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/7013305e94fe/fbioe-10-850890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/f5ebd16e3a8a/fbioe-10-850890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/abc53d0c765e/fbioe-10-850890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/3d2169c4cbe8/fbioe-10-850890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/5dc5ba4ab356/fbioe-10-850890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/7fd39e12745d/fbioe-10-850890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/a470e179074a/fbioe-10-850890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8899502/2e44b4db133a/fbioe-10-850890-g011.jpg

相似文献

[1]
Enhancing the Catalytic Performance of Candida antarctica Lipase B by Chemical Modification With Alkylated Betaine Ionic Liquids.

Front Bioeng Biotechnol. 2022-2-21

[2]
Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid.

Bioprocess Biosyst Eng. 2022-4

[3]
Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids.

Org Biomol Chem. 2013-11-7

[4]
Improved catalytic properties of Candida antarctica lipase B immobilized on cetyl chloroformate-modified cellulose nanocrystals.

Int J Biol Macromol. 2022-11-1

[5]
Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation.

J Biotechnol. 2014-12-20

[6]
Immobilization of Candida antarctic Lipase B on Functionalized Ionic Liquid Modified MWNTs.

Appl Biochem Biotechnol. 2017-11

[7]
Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups.

Colloids Surf B Biointerfaces. 2017-9-18

[8]
Activity and stability of chemically modified Candida antarctica lipase B adsorbed on solid supports.

Appl Microbiol Biotechnol. 1999-11

[9]
Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase.

Bioprocess Biosyst Eng. 2014-8

[10]
Enhanced activity of lipase B in cholinium aminoate ionic liquids: a combined experimental and computational analysis.

J Biomol Struct Dyn. 2024

引用本文的文献

[1]
Imidazolium, pyridinium and pyrazinium based ionic liquids with octyl side chains as potential antibacterial agents against multidrug resistant uropathogenic .

Heliyon. 2024-10-24

[2]
Exploring the behavior of lipase B in aqueous mixtures of an imidazolium ionic liquid and its surfactant analogue.

Front Chem. 2024-1-10

[3]
A Bibliometric Analysis: Current Perspectives and Potential Trends of Enzyme Thermostability from 1991-2022.

Appl Biochem Biotechnol. 2024-3

[4]
The antibacterial activity and mechanism of imidazole chloride ionic liquids on .

Front Microbiol. 2023-2-6

本文引用的文献

[1]
Glycine-betaine-derived ionic liquids: Synthesis, characterization and ecotoxicological evaluation.

Ecotoxicol Environ Saf. 2019-9-4

[2]
Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics.

J Chem Inf Model. 2019-3-22

[3]
Exploring the binding interaction between copper ions and Candida rugosa lipase.

Toxicol Res (Camb). 2018-9-17

[4]
Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups.

Colloids Surf B Biointerfaces. 2017-9-18

[5]
Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

Chem Rev. 2016-1-21

[6]
Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies.

J Comput Aided Mol Des. 2014-3

[7]
Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids.

Org Biomol Chem. 2013-11-7

[8]
A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase.

Biochim Biophys Acta. 2013-12

[9]
Biocatalysis in organic chemistry and biotechnology: past, present, and future.

J Am Chem Soc. 2013-8-20

[10]
Engineering the third wave of biocatalysis.

Nature. 2012-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索