Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, Paris, France.
Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
J Anat. 2022 Jul;241(1):145-167. doi: 10.1111/joa.13645. Epub 2022 Mar 9.
The long bones and associated musculature play a prominent role in the support and movement of the body and are expected to reflect the associated mechanical demands. But in addition to the functional response to adaptive changes, the conjoined effects of phylogenetic, structural and developmental constraints also shape the animal's body. In order to minimise the effect of the aforementioned constraints and to reveal the biomechanical adaptations in the musculoskeletal system to locomotor mode, we here study the forelimb of two closely related martens: the arboreal pine marten (Martes martes) and the more terrestrial stone marten (Martes foina), focusing on their forelimb muscle anatomy and long bone microanatomy; and, especially, on their covariation. To do so, we quantified muscle data and bone microanatomical parameters and created 3D and 2D maps of the cortical thickness distribution for the three long bones of the forelimb. We then analysed the covariation of muscle and bone data, both qualitatively and quantitatively. Our results reveal that species-specific muscular adaptations are not clearly reflected in the microanatomy of the bones. Yet, we observe a global thickening of the bone cortex in the radius and ulna of the more arboreal pine marten, as well a stronger flexor muscle inserting on its elbow. We attribute these differences to variation in their locomotor modes. Analyses of our 2D maps revealed a shift of cortical thickness distribution pattern linked to ontogeny, rather than species-specific patterns. We found that although intraspecific variation is not negligible, species distinction was possible when taking muscular and bone microanatomical data into consideration. Results of our covariation analyses suggest that the muscle-bone correlation is linked to ontogeny rather than to muscular strength at zones of insertion. Indeed, if we find a correlation between cortical thickness distribution and the strength of some muscles in the humerus, that is not the case for the others and in the radius and ulna. Cortical thickness distribution appears rather linked to bone contact zones and ligament insertions in the radius and ulna, and to some extent in the humerus. We conclude that inference on muscle from bone microanatomy is possible only for certain muscles in the humerus.
长骨及其相关肌肉在支撑和运动身体方面起着重要作用,预计它们反映了相关的机械需求。但除了对适应性变化的功能反应外,种系发生、结构和发育限制的共同作用也塑造了动物的身体。为了最小化上述限制的影响,并揭示运动模式对骨骼肌肉系统的生物力学适应,我们在这里研究了两种密切相关的貂:树栖的松鼠貂(Martes martes)和更陆生的石貂(Martes foina)的前肢,重点研究它们的前肢肌肉解剖结构和长骨微解剖结构;特别是它们的协变。为此,我们量化了肌肉数据和骨骼微解剖参数,并为前肢的三根长骨创建了皮质厚度分布的 3D 和 2D 图谱。然后,我们从定性和定量两个方面分析了肌肉和骨骼数据的协变。我们的研究结果表明,物种特异性的肌肉适应性并没有明显反映在骨骼的微解剖结构中。然而,我们观察到更树栖的松鼠貂的桡骨和尺骨的骨皮质整体增厚,以及其肘部更强的屈肌插入。我们将这些差异归因于它们运动模式的变化。对我们的 2D 图谱的分析揭示了与个体发生有关的皮质厚度分布模式的变化,而不是与物种特异性有关的模式。我们发现,尽管种内变异不可忽视,但考虑到肌肉和骨骼微解剖数据,物种的区分是可能的。我们的协变分析结果表明,肌肉-骨骼相关性与个体发生有关,而与插入部位的肌肉强度无关。事实上,如果我们发现皮质厚度分布与肱骨某些肌肉的强度之间存在相关性,那么在其他肌肉和桡骨、尺骨中则不是这种情况。皮质厚度分布似乎与桡骨和尺骨的骨接触区和韧带插入点有关,在一定程度上也与肱骨有关。我们的结论是,只能根据肱骨的骨骼微解剖结构推断某些肌肉的功能。