Kwon Youngjin, Kim Hee-Kyung, Jeong Keunhong
Department of Mechanical System Engineering, Korea Military Academy, Seoul 01805, Korea.
Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Korea.
Molecules. 2022 Feb 23;27(5):1500. doi: 10.3390/molecules27051500.
Density functional theory (DFT) is a widely used computational method for predicting the physical and chemical properties of metals and organometals. As the number of electrons and orbitals in an atom increases, DFT calculations for actinide complexes become more demanding due to increased complexity. Moreover, reasonable levels of theory for calculating the structures of actinide complexes are not extensively studied. In this study, 38 calculations, based on various combinations, were performed on molecules containing two representative actinides to determine the optimal combination for predicting the geometries of actinide complexes. Among the 38 calculations, four optimal combinations were identified and compared with experimental data. The optimal combinations were applied to a more complicated and practical actinide compound, the uranyl complex (UO(2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)(CHOH)), for further confirmation. The corresponding optimal calculation combination provides a reasonable level of theory for accurately optimizing the structure of actinide complexes using DFT.
密度泛函理论(DFT)是一种广泛用于预测金属和有机金属物理化学性质的计算方法。随着原子中电子和轨道数量的增加,由于复杂性增加,锕系元素配合物的DFT计算要求也更高。此外,用于计算锕系元素配合物结构的合理理论水平尚未得到广泛研究。在本研究中,对含有两种代表性锕系元素的分子进行了基于各种组合的38次计算,以确定预测锕系元素配合物几何结构的最佳组合。在这38次计算中,确定了四种最佳组合并与实验数据进行了比较。将这些最佳组合应用于一种更复杂、更实际的锕系元素化合物——铀酰配合物(UO(2,2'-(1E,1'E)-(2,2-二甲基丙烷-1,3-二基)双(氮亚基)(CHOH)),以进行进一步验证。相应的最佳计算组合为使用DFT准确优化锕系元素配合物的结构提供了合理的理论水平。