Yang Xuan, Heczko Oleg, Lehtonen Joonas, Björkstrand Roy, Salmi Mika, Uhlenwinkel Volker, Ge Yanling, Hannula Simo-Pekka
Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, Finland.
FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic.
Materials (Basel). 2022 Feb 28;15(5):1801. doi: 10.3390/ma15051801.
A non-equiatomic AlCoCrCuFeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCrCuFeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization () is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger . The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.
一种非等原子的AlCoCrCuFeNi合金已被确定为一种潜在的高强度合金,其微观结构以及由此产生的性能可以有很大变化。在本研究中,对通过激光粉末床熔融(LPBF)制备的AlCoCrCuFeNi合金的相结构、硬度和磁性进行了研究。结果表明,激光功率、扫描速度和体积能量密度(VED)在微观结构形成的不同方面发挥作用,从而导致性能发生变化。尽管研究了不同的输入参数,但所有增材制造试样均呈现体心立方(BCC)相结构,在微米尺度上元素分布均匀。由于快速凝固的微观结构,实现了高达604.6±6.8 HV0.05的显微硬度。所有打印样品均表现出软磁行为。饱和磁化强度()取决于调幅分解程度,即分解为A2和B2结构的程度越高,越大。结果表明,通过改变LPBF工艺的输入参数,可以控制调幅分解程度,进而控制磁化程度。所揭示的LPBF的应用潜力将有利于新型功能材料的开发。