Suppr超能文献

基于原始图像的残差网络的光场重建。

Light Field Reconstruction Using Residual Networks on Raw Images.

机构信息

School of Information and Communication Engineering, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea.

Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt.

出版信息

Sensors (Basel). 2022 Mar 2;22(5):1956. doi: 10.3390/s22051956.

Abstract

Although Light-Field (LF) technology attracts attention due to its large number of applications, especially with the introduction of consumer LF cameras and its frequent use, reconstructing densely sampled LF images represents a great challenge to the use and development of LF technology. Our paper proposes a learning-based method to reconstruct densely sampled LF images from a sparse set of input images. We trained our model with raw LF images rather than using multiple images of the same scene. Raw LF can represent the two-dimensional array of images captured in a single image. Therefore, it enables the network to understand and model the relationship between different images of the same scene well and thus restore more texture details and provide better quality. Using raw images has transformed the task from image reconstruction into image-to-image translation. The feature of small-baseline LF was used to define the images to be reconstructed using the nearest input view to initialize input images. Our network was trained end-to-end to minimize the sum of absolute errors between the reconstructed and ground-truth images. Experimental results on three challenging real-world datasets demonstrate the high performance of our proposed method and its outperformance over the state-of-the-art methods.

摘要

尽管光场 (LF) 技术因其应用广泛而备受关注,尤其是随着消费级 LF 相机的推出和频繁使用,对 LF 技术的应用和发展来说,从稀疏的输入图像中重建密集采样的 LF 图像仍然是一个巨大的挑战。我们的论文提出了一种基于学习的方法,可以从一组稀疏的输入图像中重建密集采样的 LF 图像。我们使用原始 LF 图像而不是同一场景的多张图像来训练我们的模型。原始 LF 可以表示在单个图像中捕获的二维图像阵列。因此,它使网络能够很好地理解和建模同一场景的不同图像之间的关系,从而恢复更多的纹理细节并提供更好的质量。使用原始图像将任务从图像重建转变为图像到图像的转换。小基线 LF 的特点被用来定义使用最近的输入视图来初始化输入图像的要重建的图像。我们的网络是端到端训练的,以最小化重建图像和真实图像之间的绝对误差之和。在三个具有挑战性的真实世界数据集上的实验结果证明了我们提出的方法的高性能及其优于最先进方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b041/8914973/ee9fc0ad0741/sensors-22-01956-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验