Huang Lijie, Zhang Jingke, Wei Xingyue, Jing Linkai, He Qiong, Xie Xia, Wang Guihuai, Luo Jianwen
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1610-1624. doi: 10.1109/TUFFC.2022.3158611. Epub 2022 Apr 27.
The change of microvasculature is associated with the occurrence and development of many diseases. Ultrafast power Doppler imaging (uPDI) is an emerging technology for the visualization of microvessels due to the development of ultrafast plane wave (PW) imaging and advanced clutter filters. However, the low signal-to-noise ratio (SNR) caused by unfocused transmit of PW imaging deteriorates the subsequent imaging of microvasculature. Nonlocal means (NLM) filtering has been demonstrated to be effective in the denoising of both natural and medical images, including ultrasound power Doppler images. However, the feasibility and performance of applying an NLM filter on the ultrasound radio frequency (RF) data have not been investigated so far. In this study, we propose to apply an NLM filter on the spatiotemporal domain of clutter filtered blood flow RF data (St-NLM) to improve the quality of uPDI. Experiments were conducted to compare the proposed method with three different methods (under various similarity window sizes), including conventional uPDI without NLM filtering (Non-NLM), NLM filtering on the obtained power Doppler images (PD-NLM), and NLM filtering on the spatial domain of clutter filtered blood flow RF data (S-NLM). Phantom experiments, in vivo contrast-enhanced human spinal cord tumor experiments, and in vivo contrast-free human liver experiments were performed to demonstrate the superiority of the proposed St-NLM method over the other three methods. Qualitative and quantitative results show that the proposed St-NLM method can effectively suppress the background noise, improve the contrast between vessels and background, and preserve the details of small vessels at the same time. In the human liver study, the proposed St-NLM method achieves 31.05-, 24.49-, and 11.15-dB higher contrast-to-noise ratios (CNRs) and 36.86-, 36.86-, and 15.22-dB lower noise powers than Non-NLM, PD-NLM, and S-NLM, respectively. In the human spinal cord tumor, the full-width at half-maximums (FWHMs) of vessel cross Section are 76, 201, and [Formula: see text] for St-NLM, Non-NLM, and S-NLM, respectively. The proposed St-NLM method can enhance the microvascular visualization in uPDI and has the potential for the diagnosis of many microvessel-change-related diseases.
微血管的变化与多种疾病的发生和发展相关。由于超快平面波(PW)成像和先进杂波滤波器的发展,超快功率多普勒成像(uPDI)是一种用于微血管可视化的新兴技术。然而,PW成像非聚焦发射所导致的低信噪比(SNR)会使后续的微血管成像质量下降。非局部均值(NLM)滤波已被证明在自然图像和医学图像(包括超声功率多普勒图像)的去噪方面是有效的。然而,到目前为止尚未研究将NLM滤波器应用于超声射频(RF)数据的可行性和性能。在本研究中,我们建议在杂波滤波后的血流RF数据的时空域上应用NLM滤波器(St-NLM),以提高uPDI的质量。进行了实验,将所提出的方法与三种不同方法(在各种相似性窗口大小下)进行比较,包括不进行NLM滤波的传统uPDI(Non-NLM)、对获得的功率多普勒图像进行NLM滤波(PD-NLM)以及对杂波滤波后的血流RF数据的空间域进行NLM滤波(S-NLM)。进行了体模实验、体内对比增强的人类脊髓肿瘤实验和体内无对比剂的人类肝脏实验,以证明所提出的St-NLM方法优于其他三种方法。定性和定量结果表明,所提出的St-NLM方法能够有效抑制背景噪声,提高血管与背景之间的对比度,同时保留小血管的细节。在人类肝脏研究中,所提出的St-NLM方法分别比Non-NLM、PD-NLM和S-NLM实现了高31.05 dB、24.49 dB和11.15 dB的对比噪声比(CNR)以及低36.86 dB、36.86 dB和15.22 dB的噪声功率。在人类脊髓肿瘤中,St-NLM、Non-NLM和S-NLM的血管横截面半高宽(FWHM)分别为76、201和[公式:见原文]。所提出的St-NLM方法能够增强uPDI中的微血管可视化,并且在诊断许多与微血管变化相关的疾病方面具有潜力。