Suppr超能文献

基于空间角相干因子的高质量超快速功率多普勒成像。

High-Quality Ultrafast Power Doppler Imaging Based on Spatial Angular Coherence Factor.

作者信息

Huang Lijie, Wang Yadan, Wang Rui, Wei Xingyue, He Qiong, Zheng Chichao, Peng Hu, Luo Jianwen

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):378-392. doi: 10.1109/TUFFC.2023.3253257. Epub 2023 Apr 26.

Abstract

The morphological and hemodynamic changes of microvessels are demonstrated to be related to the diseased conditions in tissues. Ultrafast power Doppler imaging (uPDI) is a novel modality with a significantly increased Doppler sensitivity, benefiting from the ultrahigh frame rate plane-wave imaging (PWI) and advanced clutter filtering. However, unfocused plane-wave transmission often leads to a low imaging quality, which degrades the subsequent microvascular visualization in power Doppler imaging. Coherence factor (CF)-based adaptive beamformers have been widely studied in conventional B-mode imaging. In this study, we propose a spatial and angular coherence factor (SACF) beamformer for improved uPDI (SACF-uPDI) by calculating the spatial CF across apertures and the angular CF across transmit angles, respectively. To identify the superiority of SACF-uPDI, simulations, in vivo contrast-enhanced rat kidney, and in vivo contrast-free human neonatal brain studies were conducted. Results demonstrate that SACF-uPDI can effectively enhance contrast and resolution and suppress background noise simultaneously, compared with conventional uPDI methods based on delay-and-sum (DAS) (DAS-uPDI) and CF (CF-uPDI). In the simulations, SACF-uPDI can improve the lateral and axial resolutions compared with those of DAS-uPDI, from 176 to [Formula: see text] of lateral resolution, and from 111 to [Formula: see text] of axial resolution. In the in vivo contrast-enhanced experiments, SACF achieves 15.14- and 5.6-dB higher contrast-to-noise ratio (CNR), 15.25- and 3.68-dB lower noise power, and 240- and 15- [Formula: see text] narrower full-width at half-maximum (FWHM) than DAS-uPDI and CF-uPDI, respectively. In the in vivo contrast-free experiments, SACF achieves 6.11- and 1.09-dB higher CNR, 11.93- and 4.01-dB lower noise power, and 528- and 160- [Formula: see text] narrower FWHM than DAS-uPDI and CF-uPDI, respectively. In conclusion, the proposed SACF-uPDI method can efficiently improve the microvascular imaging quality and has the potential to facilitate clinical applications.

摘要

微血管的形态和血流动力学变化被证明与组织中的病变情况相关。超快功率多普勒成像(uPDI)是一种新型的成像方式,其多普勒灵敏度显著提高,这得益于超高帧率平面波成像(PWI)和先进的杂波滤波技术。然而,非聚焦平面波传输往往导致成像质量较低,这会降低功率多普勒成像中后续微血管的可视化效果。基于相干因子(CF)的自适应波束形成器在传统B模式成像中已得到广泛研究。在本研究中,我们提出了一种空间和角度相干因子(SACF)波束形成器,通过分别计算跨孔径的空间CF和跨发射角度的角度CF,来改进uPDI(SACF-uPDI)。为了确定SACF-uPDI的优势,我们进行了模拟、体内对比增强大鼠肾脏实验和体内无对比剂的人类新生儿脑部实验。结果表明,与基于延迟求和(DAS)的传统uPDI方法(DAS-uPDI)和CF(CF-uPDI)相比,SACF-uPDI能够有效地增强对比度和分辨率,同时抑制背景噪声。在模拟实验中,与DAS-uPDI相比,SACF-uPDI可以提高横向和轴向分辨率,横向分辨率从176提高到[公式:见原文],轴向分辨率从111提高到[公式:见原文]。在体内对比增强实验中,与DAS-uPDI和CF-uPDI相比,SACF分别实现了高15.14和5.6分贝的对比度噪声比(CNR)、低15.25和3.68分贝 的噪声功率以及窄240和15[公式:见原文]的半高宽(FWHM)。在体内无对比剂实验中,与DAS-uPDI和CF-uPDI相比,SACF分别实现了高6.11和1.09分贝的CNR、低11.93和4.01分贝的噪声功率以及窄528和160[公式:见原文]的FWHM。总之,所提出的SACF-uPDI方法能够有效地提高微血管成像质量,并具有促进临床应用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验