Suppr超能文献

基于 1 位压缩感知的叠加 CSI 反馈的深度学习。

Deep learning for 1-bit compressed sensing-based superimposed CSI feedback.

机构信息

School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.

Synopsys Inc., Hillsboro, OR, United States of America.

出版信息

PLoS One. 2022 Mar 10;17(3):e0265109. doi: 10.1371/journal.pone.0265109. eCollection 2022.

Abstract

In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, 1-bit compressed sensing (CS)-based superimposed channel state information (CSI) feedback has shown many advantages, while still faces many challenges, such as low accuracy of the downlink CSI recovery and large processing delays. To overcome these drawbacks, this paper proposes a deep learning (DL) scheme to improve the 1-bit compressed sensing-based superimposed CSI feedback. On the user side, the downlink CSI is compressed with the 1-bit CS technique, superimposed on the uplink user data sequences (UL-US), and then sent back to the base station (BS). At the BS, based on the model-driven approach and assisted by the superimposition-interference cancellation technology, a multi-task detection network is first constructed for detecting both the UL-US and downlink CSI. In particular, this detection network is jointly trained to detect the UL-US and downlink CSI simultaneously, capturing a globally optimized network parameter. Then, with the recovered bits for the downlink CSI, a lightweight reconstruction scheme, which consists of an initial feature extraction of the downlink CSI with the simplified traditional method and a single hidden layer network, is utilized to reconstruct the downlink CSI with low processing delay. Compared with the 1-bit CS-based superimposed CSI feedback scheme, the proposed scheme improves the recovery accuracy of the UL-US and downlink CSI with lower processing delay and possesses robustness against parameter variations.

摘要

在频分双工 (FDD) 大规模多输入多输出 (MIMO) 系统中,基于 1 位压缩感知 (CS) 的叠加信道状态信息 (CSI) 反馈具有许多优势,但仍面临许多挑战,例如下行 CSI 恢复精度低和处理延迟大。为了克服这些缺点,本文提出了一种深度学习 (DL) 方案,以改进基于 1 位压缩感知的叠加 CSI 反馈。在用户端,下行 CSI 采用 1 位 CS 技术进行压缩,叠加在上行用户数据序列 (UL-US) 上,然后发送回基站 (BS)。在 BS 端,基于模型驱动的方法,并借助叠加干扰消除技术,首先构建一个多任务检测网络,用于同时检测 UL-US 和下行 CSI。特别是,这个检测网络是联合训练的,用于同时检测 UL-US 和下行 CSI,捕获全局优化的网络参数。然后,通过恢复的下行 CSI 比特,利用简化的传统方法进行下行 CSI 的初始特征提取和单个隐藏层网络,实现具有低处理延迟的下行 CSI 重建。与基于 1 位 CS 的叠加 CSI 反馈方案相比,所提出的方案提高了 UL-US 和下行 CSI 的恢复精度,具有更低的处理延迟,并具有对参数变化的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb00/8912209/cffc6eab1cf4/pone.0265109.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验