Suppr超能文献

基于二硫键的合理设计提高茂原链霉菌转谷氨酰胺酶的热稳定性

Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond.

作者信息

Wang Hongjing, Chen Haiqing, Li Qingbin, Yu Fan, Yan Yaru, Liu Shuang, Tian Jian, Tan Jianxin

机构信息

College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China.

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

出版信息

Protein Expr Purif. 2022 Aug;195-196:106079. doi: 10.1016/j.pep.2022.106079. Epub 2022 Mar 7.

Abstract

Transglutaminase (TGase), a transferase, is widely adopted in the food industry and other biological fields due to its unique characteristics of modifying proteins by intra- or intermolecular cross-linking. However, obtaining a mutant TGase that is highly thermostable and active would significantly aid in food processing. Therefore, this study sought to improve the thermostability of TGase by introducing an artificial disulfide bridge through a structure-based rational enzyme engineering approach. After the rational screening, six disulfide mutants (E139C/G143C, R146C/E149C, A182C/N195C, L200C/R208C, T223C/F226C, and E139C/G143C+L200C/R208C) of the transglutaminase gene from Streptomyces mobaraensis (Sm-TGase) were selected and constructed by rationally designed mutations in cysteine. Of them, a mutant (E139C/G143C) with enhanced thermostability was selected and characterized for further analysis. The results indicated that the mutant E139C/G143C had a similar specific activity, optimal temperature, and pH but a lower K and higher V than the wild-type. Its half-life (t) at 55 °C was 10.7 min, which was 1.69-fold higher than the wild-type, while its melting temperature (Tm) was 3.52 °C higher than the wild-type. These results proved that the introduction of disulfide bonds into TGase by rational design could be an effective approach to improve the thermostability of TGase and other food enzymes for food processing.

摘要

转谷氨酰胺酶(TGase)是一种转移酶,由于其通过分子内或分子间交联修饰蛋白质的独特特性,在食品工业和其他生物领域中被广泛应用。然而,获得一种高热稳定性和高活性的突变型TGase将极大地有助于食品加工。因此,本研究旨在通过基于结构的合理酶工程方法引入人工二硫键来提高TGase的热稳定性。经过合理筛选,通过对半胱氨酸进行合理设计的突变,从茂原链霉菌(Sm-TGase)中选择并构建了六个转谷氨酰胺酶基因的二硫键突变体(E139C/G143C、R146C/E149C、A182C/N195C、L200C/R208C、T223C/F226C和E139C/G143C+L200C/R208C)。其中,选择了一个热稳定性增强的突变体(E139C/G143C)并对其进行表征以进行进一步分析。结果表明,突变体E139C/G143C具有与野生型相似的比活性、最适温度和pH,但K值较低,V值较高。其在55°C下的半衰期(t)为10.7分钟,比野生型高1.69倍,而其解链温度(Tm)比野生型高3.52°C。这些结果证明,通过合理设计将二硫键引入TGase可能是提高TGase和其他用于食品加工的食品酶热稳定性的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验