Suppr超能文献

小鼠内囊和大脑脚的形成:纹状体苍白球纤维在条件性突变体中的先驱作用

Formation of the Mouse Internal Capsule and Cerebral Peduncle: A Pioneering Role for Striatonigral Axons as Revealed in Conditional Mutants.

机构信息

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.

Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.

出版信息

J Neurosci. 2022 Apr 20;42(16):3344-3364. doi: 10.1523/JNEUROSCI.2291-21.2022. Epub 2022 Mar 10.

Abstract

The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of (striatal direct pathway) and (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain- or telencephalon-specific inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle. The basal ganglia are a group of subcortical nuclei with established roles in the coordination of voluntary motor programs, aspects of cognition, and the selection of appropriate social behaviors. Hence, disruptions in basal ganglia connectivity have been implicated in the motor, cognitive, and social dysfunction characterizing common neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, and tic disorder. Here, we identified a novel role for the striatonigral (direct) pathway in pioneering the internal capsule and cerebral peduncle, and in guiding axons extending to and from the cortex. Our findings suggest that the abnormal development of basal ganglia circuits can drive secondary internal capsule defects and thereby may contribute to the pathology of these disorders.

摘要

纹状体的投射神经元是基底神经节的主要核团之一,属于以下两种主要途径之一:纹状苍白球(间接)途径或纹状体黑质(直接)途径。纹状体黑质轴突延伸穿过内囊和大脑脚,在延伸过程中会遇到上行束(皮质丘脑),同时沿着下行束(皮质传出)行进。这些观察结果表明,纹状体回路可能有助于指导它们的轨迹。为了研究纹状体黑质轴突对内囊形成的发育贡献,我们利用 (纹状体直接途径)和 (皮质传出途径)BAC 转基因报告小鼠,结合免疫组织化学标记物,在整个发育过程中追踪这些轴突途径。我们表明,纹状体黑质轴突开拓了内囊和大脑脚,并在时间和空间上很好地定位,为皮质传出和皮质丘脑轴突提供了指导。使用 (条件敲除)(cKO)小鼠,其表现出纹状体黑质轴突生长的破坏,我们观察到,尽管 不在皮质或皮质丘脑投射神经元中表达,但无论是在前脑腹侧还是端脑特异性 失活,都存在皮质传出和皮质丘脑轴突缺陷。因此,纹状体黑质轴突缺陷会破坏内囊的形成。我们在 cKO 中的全基因组转录组分析揭示了与细胞粘附、生长锥动力学和细胞外基质组成相关的基因表达变化,这表明纹状体黑质途径发挥这种指导作用的潜在机制。总的来说,我们的数据支持纹状体直接途径在正确组装内囊和大脑脚内的上行和下行轴突束中的新的先驱作用。基底神经节是一组皮质下核团,在协调自愿运动程序、认知方面以及选择适当的社会行为方面具有既定作用。因此,基底神经节连接的中断与常见神经发育障碍(如注意力缺陷多动障碍、自闭症谱系障碍、强迫症和抽动障碍)的运动、认知和社交功能障碍有关。在这里,我们确定了纹状体黑质(直接)途径在开拓内囊和大脑脚以及引导伸向皮质和来自皮质的轴突方面的新作用。我们的发现表明,基底神经节回路的异常发育可能会导致继发性内囊缺陷,并可能导致这些疾病的病理学。

相似文献

1
Formation of the Mouse Internal Capsule and Cerebral Peduncle: A Pioneering Role for Striatonigral Axons as Revealed in Conditional Mutants.
J Neurosci. 2022 Apr 20;42(16):3344-3364. doi: 10.1523/JNEUROSCI.2291-21.2022. Epub 2022 Mar 10.
2
Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development.
J Neurosci. 2015 Oct 21;35(42):14205-19. doi: 10.1523/JNEUROSCI.1840-15.2015.
5
Dual role for Islet-1 in promoting striatonigral and repressing striatopallidal genetic programs to specify striatonigral cell identity.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E168-77. doi: 10.1073/pnas.1319138111. Epub 2013 Dec 18.
6
The LIM homeobox gene Isl1 is required for the correct development of the striatonigral pathway in the mouse.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):E4026-35. doi: 10.1073/pnas.1308275110. Epub 2013 Sep 30.
7
Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons.
Cereb Cortex. 2016 Jul;26(7):3323-34. doi: 10.1093/cercor/bhw132. Epub 2016 May 11.
8
Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection.
J Neurosci. 2000 Aug 1;20(15):5792-801. doi: 10.1523/JNEUROSCI.20-15-05792.2000.
10
Emergence of connectivity in the embryonic rat parietal cortex.
Cereb Cortex. 1992 Jul-Aug;2(4):336-52. doi: 10.1093/cercor/2.4.336.

引用本文的文献

3
Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington's disease.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2316176121. doi: 10.1073/pnas.2316176121. Epub 2024 May 21.
4
EphB1 controls long-range cortical axon guidance through a cell non-autonomous role in GABAergic cells.
Development. 2024 Mar 1;151(5). doi: 10.1242/dev.201439. Epub 2024 Feb 28.
7
The transcription factor promotes the D1 MSN identity and represses the D2 MSN identity.
Front Cell Dev Biol. 2022 Aug 23;10:948331. doi: 10.3389/fcell.2022.948331. eCollection 2022.

本文引用的文献

1
Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex.
Cereb Cortex. 2021 Oct 1;31(11):5206-5224. doi: 10.1093/cercor/bhab152.
2
Analysis of reactive astrogliosis in mouse brain using hybridization combined with immunohistochemistry.
STAR Protoc. 2021 Mar 2;2(1):100375. doi: 10.1016/j.xpro.2021.100375. eCollection 2021 Mar 19.
3
Neurexin1⍺ differentially regulates synaptic efficacy within striatal circuits.
Cell Rep. 2021 Feb 23;34(8):108773. doi: 10.1016/j.celrep.2021.108773.
4
VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots.
Sci Rep. 2020 Nov 25;10(1):20560. doi: 10.1038/s41598-020-76603-3.
6
Trans-Axonal Signaling in Neural Circuit Wiring.
Int J Mol Sci. 2020 Jul 21;21(14):5170. doi: 10.3390/ijms21145170.
7
Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold.
Neuron. 2020 Sep 23;107(6):1197-1211.e9. doi: 10.1016/j.neuron.2020.06.035. Epub 2020 Jul 23.
8
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.
eNeuro. 2020 Jun 12;7(3). doi: 10.1523/ENEURO.0066-20.2020. Print 2020 May/Jun.
9
Zfhx3 is required for the differentiation of late born D1-type medium spiny neurons.
Exp Neurol. 2019 Dec;322:113055. doi: 10.1016/j.expneurol.2019.113055. Epub 2019 Sep 3.
10
Varying Negative Pressure Wound Therapy Acute Effects on Human Split-Thickness Autografts.
J Burn Care Res. 2020 Jan 30;41(1):104-112. doi: 10.1093/jbcr/irz122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验