Suppr超能文献

通过与机器人患者的视触觉相互作用模拟疼痛的动态面部表情。

Simulating dynamic facial expressions of pain from visuo-haptic interactions with a robotic patient.

机构信息

Dyson School of Design Engineering, Imperial College London, London, SW7 1AL, UK.

School of Psychology & Neuroscience, University of Glasgow, Glasgow, G12 8QB, UK.

出版信息

Sci Rep. 2022 Mar 10;12(1):4200. doi: 10.1038/s41598-022-08115-1.

Abstract

Medical training simulators can provide a safe and controlled environment for medical students to practice their physical examination skills. An important source of information for physicians is the visual feedback of involuntary pain facial expressions in response to physical palpation on an affected area of a patient. However, most existing robotic medical training simulators that can capture physical examination behaviours in real-time cannot display facial expressions and comprise a limited range of patient identities in terms of ethnicity and gender. Together, these limitations restrict the utility of medical training simulators because they do not provide medical students with a representative sample of pain facial expressions and face identities, which could result in biased practices. Further, these limitations restrict the utility of such medical simulators to detect and correct early signs of bias in medical training. Here, for the first time, we present a robotic system that can simulate facial expressions of pain in response to palpations, displayed on a range of patient face identities. We use the unique approach of modelling dynamic pain facial expressions using a data-driven perception-based psychophysical method combined with the visuo-haptic inputs of users performing palpations on a robot medical simulator. Specifically, participants performed palpation actions on the abdomen phantom of a simulated patient, which triggered the real-time display of six pain-related facial Action Units (AUs) on a robotic face (MorphFace), each controlled by two pseudo randomly generated transient parameters: rate of change [Formula: see text] and activation delay [Formula: see text]. Participants then rated the appropriateness of the facial expression displayed in response to their palpations on a 4-point scale from "strongly disagree" to "strongly agree". Each participant ([Formula: see text], 4 Asian females, 4 Asian males, 4 White females and 4 White males) performed 200 palpation trials on 4 patient identities (Black female, Black male, White female and White male) simulated using MorphFace. Results showed facial expressions rated as most appropriate by all participants comprise a higher rate of change and shorter delay from upper face AUs (around the eyes) to those in the lower face (around the mouth). In contrast, we found that transient parameter values of most appropriate-rated pain facial expressions, palpation forces, and delays between palpation actions varied across participant-simulated patient pairs according to gender and ethnicity. These findings suggest that gender and ethnicity biases affect palpation strategies and the perception of pain facial expressions displayed on MorphFace. We anticipate that our approach will be used to generate physical examination models with diverse patient demographics to reduce erroneous judgments in medical students, and provide focused training to address these errors.

摘要

医学培训模拟器可为医学生练习体检技能提供安全可控的环境。医生的一个重要信息来源是在患者受影响区域进行物理触诊时,观察到的非自愿疼痛面部表情的视觉反馈。然而,大多数现有的可以实时捕捉体检行为的机器人医学培训模拟器无法显示面部表情,并且在种族和性别方面患者身份的范围有限。这些局限性共同限制了医学培训模拟器的实用性,因为它们没有为医学生提供具有代表性的疼痛面部表情和面部身份样本,这可能导致实践偏见。此外,这些局限性限制了此类医学模拟器检测和纠正医学培训中早期偏见的能力。在这里,我们首次提出了一种机器人系统,可以模拟对触诊的疼痛面部表情,同时在一系列患者面部身份上显示。我们使用独特的方法,通过基于数据的感知心理物理学方法来模拟动态疼痛面部表情,同时结合用户对机器人医学模拟器上的触诊的视触觉输入。具体来说,参与者在模拟患者腹部的虚拟模型上进行触诊动作,这会触发机器人面部(MorphFace)上实时显示与疼痛相关的六个面部动作单元(AU),每个 AU 都由两个伪随机生成的瞬态参数控制:变化率 [Formula: see text] 和激活延迟 [Formula: see text]。参与者随后在 4 分制上对触诊时显示的面部表情进行评分,范围从“非常不同意”到“非常同意”。每个参与者 ([Formula: see text],4 名亚洲女性、4 名亚洲男性、4 名白人女性和 4 名白人男性) 在 MorphFace 上模拟的 4 个患者身份(黑人女性、黑人男性、白人女性和白人男性)上进行了 200 次触诊试验。结果表明,所有参与者评为最合适的面部表情包括更高的变化率和更短的上脸 AU(眼睛周围)到下脸 AU(嘴巴周围)的延迟。相比之下,我们发现,最合适评分的疼痛面部表情、触诊力和触诊动作之间的延迟的瞬态参数值因参与者-模拟患者对而异,这取决于性别和种族。这些发现表明性别和种族偏见会影响触诊策略以及 MorphFace 上显示的疼痛面部表情的感知。我们预计,我们的方法将用于生成具有不同患者人口统计学特征的体检模型,以减少医学生的错误判断,并提供有针对性的培训以解决这些错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d1/8913843/e8f14f9d7c50/41598_2022_8115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验