Gößler Markus, Hengge Elisabeth, Bogar Marco, Albu Mihaela, Knez Daniel, Amenitsch Heinz, Würschum Roland
Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
CERIC-ERIC C/o Elettra Sincrotrone, S.S. 14 Km 163.5, 34149 Trieste, Italy.
J Phys Chem C Nanomater Interfaces. 2022 Mar 3;126(8):4037-4047. doi: 10.1021/acs.jpcc.1c09592. Epub 2022 Feb 17.
Electrochemical dealloying has become a standard technique to produce nanoporous network structures of various noble metals, exploiting the selective dissolution of one component from an alloy. While achieving nanoporosity during dealloying has been intensively studied for the prime example of nanoporous Au from a AgAu alloy, dealloying from other noble-metal alloys has been rarely investigated in the scientific literature. Here, we study the evolution of nanoporosity in the electrochemical dealloying process for both CoPd and AgAu alloys using a combination of grazing-incidence small-angle X-ray scattering (GISAXS), kinetic Monte Carlo (KMC) simulations, and scanning transmission electron microscopy (STEM). When comparing dealloying kinetics, we find a more rapid progression of the dealloying front for CoPd and also a considerably slower coarsening of the nanoporous structure for Pd in relation to Au. We argue that our findings are natural consequences of the effectively higher dealloying potential and the higher interatomic binding energy for the CoPd alloy. Our results corroborate the understanding of electrochemical dealloying on the basis of two rate equations for dissolution and surface diffusion and suggest the general applicability of this dealloying mechanism to binary alloys. The present study contributes to the future tailoring of structural size in nanoporous metals for improved chemical surface activity.
电化学脱合金化已成为一种制备各种贵金属纳米多孔网络结构的标准技术,该技术利用合金中一种组分的选择性溶解。虽然从AgAu合金制备纳米多孔金这一典型例子中,脱合金化过程中实现纳米孔隙率的研究较为深入,但科学文献中对其他贵金属合金的脱合金化研究却很少。在此,我们结合掠入射小角X射线散射(GISAXS)、动力学蒙特卡罗(KMC)模拟和扫描透射电子显微镜(STEM),研究了CoPd和AgAu合金在电化学脱合金化过程中纳米孔隙率的演变。比较脱合金化动力学时,我们发现CoPd的脱合金化前沿进展更快,而且相对于Au,Pd的纳米多孔结构粗化速度明显更慢。我们认为,我们的发现是CoPd合金有效脱合金化电位较高和原子间结合能较高的自然结果。我们的结果证实了基于溶解和表面扩散两个速率方程对电化学脱合金化的理解,并表明这种脱合金化机制对二元合金具有普遍适用性。本研究有助于未来对纳米多孔金属的结构尺寸进行调整,以提高化学表面活性。