Suppr超能文献

通过气相脱合金化制备的三维双连续纳米多孔材料。

Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying.

作者信息

Lu Zhen, Li Cheng, Han Jiuhui, Zhang Fan, Liu Pan, Wang Hao, Wang Zhili, Cheng Chun, Chen Linghan, Hirata Akihiko, Fujita Takeshi, Erlebacher Jonah, Chen Mingwei

机构信息

Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.

Mathematics for Advanced Materials-OIL, AIST-Tohoku University, Sendai, 980-8577, Japan.

出版信息

Nat Commun. 2018 Jan 18;9(1):276. doi: 10.1038/s41467-017-02167-y.

Abstract

Three-dimensional bicontinuous open (3DBO) nanoporosity has been recognized as an important nanoarchitecture for catalysis, sensing, and energy storage. Dealloying, i.e., selectively removing a component from an alloy, is an efficient way to fabricate nanoporous materials. However, current electrochemical and liquid-metal dealloying methods can only be applied to a limited number of alloys and usually require an etching process with chemical waste. Here, we report a green and universal approach, vapor-phase dealloying, to fabricate nanoporous materials by utilizing the vapor pressure difference between constituent elements in an alloy to selectively remove a component with a high partial vapor pressure for 3DBO nanoporosity. We demonstrate that extensive elements, regardless of chemical activity, can be fabricated as nanoporous materials with tunable pore sizes. Importantly, the evaporated components can be fully recovered. This environmentally friendly dealloying method paves a way to fabricate 3DBO nanoporous materials for a wide range of structural and functional applications.

摘要

三维双连续开放(3DBO)纳米孔隙率已被公认为是一种用于催化、传感和能量存储的重要纳米结构。脱合金化,即从合金中选择性地去除一种组分,是制备纳米多孔材料的有效方法。然而,目前的电化学和液态金属脱合金化方法仅能应用于有限数量的合金,并且通常需要进行产生化学废料的蚀刻过程。在此,我们报告一种绿色通用的方法——气相脱合金化,通过利用合金中组成元素之间的蒸气压差来选择性地去除具有高蒸气压的组分以制备用于3DBO纳米孔隙率的纳米多孔材料。我们证明,无论化学活性如何,多种元素都可以被制备成孔径可调的纳米多孔材料。重要的是,蒸发的组分能够被完全回收。这种环境友好的脱合金化方法为制备用于广泛结构和功能应用的3DBO纳米多孔材料铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ec/5773601/40294ba45ae1/41467_2017_2167_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验