Suppr超能文献

一个近等基因系及其轮回亲本的转录组分析揭示了分蘖期水稻中Pup1数量性状位点在耐低磷胁迫中的作用。

Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage.

作者信息

Kumar Suresh, Agrawal Anuradha, Seem Karishma, Kumar Santosh, Vinod K K, Mohapatra Trilochan

机构信息

Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.

Decode Genomics Private Limited, New Delhi, India.

出版信息

Plant Mol Biol. 2022 May;109(1-2):29-50. doi: 10.1007/s11103-022-01254-z. Epub 2022 Mar 11.

Abstract

Phosphorus (P) is essential for cellular processes like respiration, photosynthesis, biosynthesis of membrane phospholipids, etc. To cope with P deficiency stress, plants adopt reprograming of the expression of genes involved in different metabolic/signaling pathways for survival, growth, and development. Plants use transcriptional, post-transcriptional, and/or post-translational machinery to achieve P homeostasis. Several transcription factors (TFs), miRNAs, and P transporters play important roles in P deficiency tolerance; however, the underlying mechanisms responsible for P deficiency tolerance remain poorly understood. Studies on P starvation/deficiency responses in plants at early (seedling) stage of growth have been reported but only a few of them focused on molecular responses of the plant at advanced (tillering or reproductive) stage of growth. To decipher the strategies adopted by rice at tillering stage under P deficiency stress, a pair of contrasting genotypes [Pusa-44 (a high-yielding, P deficiency sensitive cultivar) and its near-isogenic line (NIL-23, P deficiency tolerant) for Pup1 QTL] was used for morphophysiological, biochemical, and molecular analyses. Comparative analyses of shoot and root tissues from 45-day-old plants grown hydroponically under P sufficient (16 ppm) or P deficient (4 ppm) medium confirmed some of the known morphophysiological responses. Moreover, RNA-seq analysis revealed the important roles of phosphate transporters, TFs, auxin-responsive proteins, modulation in the cell wall, fatty acid metabolism, and chromatin architecture/epigenetic modifications in providing P deficiency tolerance to NIL-23, which were brought in due to the introgression of the Pup1 QTL in Pusa-44. This study provides insights into the molecular functions of Pup1 for P deficiency tolerance, which might be utilized to improve P-use efficiency of rice for better productivity in P deficient soils. KEY MESSAGE: Introgression of Pup1 QTL in high-yielding rice cultivar modulates mainly phosphate transporters, TFs, auxin-responsive proteins, cell wall structure, fatty acid metabolism, and chromatin architecture/epigenetic modifications at tillering stage of growth under phosphorus deficiency stress.

摘要

磷(P)对于细胞呼吸、光合作用、膜磷脂生物合成等细胞过程至关重要。为应对磷缺乏胁迫,植物通过重新编程参与不同代谢/信号通路的基因表达来实现生存、生长和发育。植物利用转录、转录后和/或翻译后机制来维持磷稳态。几种转录因子(TFs)、微小RNA(miRNAs)和磷转运蛋白在耐低磷性中发挥重要作用;然而,耐低磷性的潜在机制仍知之甚少。已有关于植物生长早期(幼苗期)对磷饥饿/缺乏响应的研究报道,但其中只有少数研究关注植物生长后期(分蘖期或生殖期)的分子响应。为了解水稻在分蘖期低磷胁迫下所采用的策略,使用了一对对比基因型[Pusa - 44(高产、低磷敏感品种)及其Pup1 QTL的近等基因系(NIL - 23,耐低磷)]进行形态生理、生化和分子分析。对水培在磷充足(16 ppm)或磷缺乏(4 ppm)培养基中的45日龄植株的地上部和根部组织进行比较分析,证实了一些已知的形态生理响应。此外,RNA测序分析揭示了磷酸盐转运蛋白、转录因子、生长素响应蛋白、细胞壁调节、脂肪酸代谢以及染色质结构/表观遗传修饰在赋予NIL - 23耐低磷性方面的重要作用,这是由于Pup1 QTL导入Pusa - 44所致。本研究深入了解了Pup1在耐低磷性方面的分子功能,这可能有助于提高水稻在低磷土壤中的磷利用效率,以实现更高的产量。关键信息:高产水稻品种中Pup1 QTL的导入主要调节了磷缺乏胁迫下分蘖期的磷酸盐转运蛋白、转录因子、生长素响应蛋白、细胞壁结构、脂肪酸代谢以及染色质结构/表观遗传修饰。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验