Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034.
School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, Limeira, SP 13484-332, Brazil.
J Chromatogr A. 2022 Apr 12;1668:462907. doi: 10.1016/j.chroma.2022.462907. Epub 2022 Feb 16.
In this study, non-targeted gas chromatography-Orbitrap-mass spectrometry (GC-Orbitrap-MS) analysis of semi-volatile organic compounds (SVOCs) in indoor environmental dust samples is proposed. High-resolution mass spectrometry (HRMS) provides massive amounts of information-rich mass data which presents storage and processing challenges. Thus, a combination of the regions of interest (ROI) data filtering and mass compression method, together with the multivariate curve resolution-alternating least squares (MCR-ALS) data resolution method (which is called the ROIMCR procedure), is applied to solve huge data analysis challenges. The ROI method assures a significant reduction of the computer storage requirements of mass spectrometry data without any significant loss of spectral resolution nor of accuracy on m/z measures. On the other side, the MCR-ALS method allows the total resolution of the elution and spectral profiles of the different constituents present in the analyzed samples, not requiring their chromatographic peak alignment nor their chromatographic peak shape modelling using natural constraints like non-negativity. Since all the possible species are investigated by the ROIMCR method, it is a powerful tool for non-targeted analysis. In order to check that the sample constituents are correctly recovered and identified by the proposed ROIMCR procedure when is applied to non-targeted GC-Orbitrap-MS analysis, a set of lab-emulated dust samples at different concentration levels were qualitatively and quantitatively analyzed in detail. Then, to evaluate the performance of the proposed ROIMCR procedure, this method was applied to the same type of non-targeted GC-Orbitrap-MS analysis data of two real dust samples with unknown compositions. Many chemical compounds present in the lab-emulated dust samples were correctly identified and quantified in these dust samples. An additional number of extra chemical compounds were resolved in these real dust samples, whose identification as putative constituents of these samples is proposed. The ROIMCR procedure proposed in this work facilitates the simultaneous data processing of complex analytical samples and allows the detection and identification of possible extra sample constituents. As a final conclusion of this work, the combination of the GC-Orbitrap-MS and ROIMCR methods, is shown to be a reliable tool for the non-targeted qualitative and quantitative analysis of complex analytical and environmental samples.
本研究提出了一种用于室内环境灰尘样品中半挥发性有机化合物(SVOC)的非靶向气相色谱-轨道阱质谱(GC-Orbitrap-MS)分析方法。高分辨率质谱(HRMS)提供了大量信息丰富的质量数据,这给存储和处理带来了挑战。因此,采用感兴趣区域(ROI)数据过滤和质量压缩方法与多变量曲线分辨交替最小二乘法(MCR-ALS)数据分辨方法(称为 ROI-MCR 程序)相结合,以解决大数据分析的挑战。ROI 方法确保了质谱数据的计算机存储要求大大降低,而不会对光谱分辨率或 m/z 测量的准确性造成任何显著损失。另一方面,MCR-ALS 方法允许对分析样品中存在的不同组分的洗脱和光谱轮廓进行总分辨,而无需对其色谱峰进行对齐,也无需使用非负等自然约束对其色谱峰形状进行建模。由于通过 ROIMCR 方法可以研究所有可能的物质,因此它是一种强大的非靶向分析工具。为了检查当应用于非靶向 GC-Orbitrap-MS 分析时,ROIMCR 程序是否可以正确回收和识别样品中的成分,详细地对不同浓度水平的实验室模拟灰尘样品进行了定性和定量分析。然后,为了评估所提出的 ROIMCR 程序的性能,将该方法应用于两种具有未知成分的真实灰尘样品的相同类型的非靶向 GC-Orbitrap-MS 分析数据中。在这些灰尘样品中,正确地鉴定和定量了实验室模拟灰尘样品中存在的许多化学物质。在这些真实灰尘样品中解析了更多的额外化学物质,提出了将其鉴定为这些样品的可能成分。本工作中提出的 ROIMCR 程序便于对复杂分析样品进行同时数据处理,并允许检测和识别可能的额外样品成分。作为本工作的最终结论,GC-Orbitrap-MS 和 ROIMCR 方法的结合被证明是用于复杂分析和环境样品的非靶向定性和定量分析的可靠工具。