Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
University of Science and Technology of China, Hefei, 230026, People's Republic of China.
Microb Cell Fact. 2022 Mar 12;21(1):37. doi: 10.1186/s12934-022-01768-7.
The study and application of microbial consortia are topics of interest in the fields of metabolic engineering and synthetic biology. In this study, we report the design and optimisation of Elizabethkingia meningoseptica and Escherichia coli co-culture, which bypass certain limitations found during the molecular modification of E. meningoseptica, such as resistance to many antibiotics and fewer available molecular tools.
The octaprenyl pyrophosphate synthase from E. meningoseptica sp. F2 (EmOPPS) was expressed, purified, and identified in the present study. Then, owing to the low vitamin K2 production by E. coli or E. meningoseptica sp. F2 monoculture, we introduced the E. meningoseptica and E. coli co-culture strategy to improve vitamin K2 biosynthesis. We achieved production titres of 32 mg/L by introducing vitamin K2 synthesis-related genes from E. meningoseptica sp. F2 into E. coli, which were approximately three-fold more than the titre achieved with E. meningoseptica sp. F2 monoculture. This study establishes a foundation for further engineering of MK-n (n = 4, 5, 6, 7, 8) in a co-cultivation system of E. meningoseptica and E. coli. Finally, we analysed the surface morphology, esterase activity, and membrane permeability of these microbial consortia using scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, respectively. The results showed that the co-cultured bacteria were closely linked and that lipase activity and membrane permeability improved, which may be conducive to the exchange of substances between bacteria.
Our results demonstrated that co-culture engineering can be a useful method in the broad field of metabolic engineering of strains with restricted molecular modifications.
微生物群落的研究和应用是代谢工程和合成生物学领域的研究热点。在本研究中,我们报告了脑膜脓毒性伊丽莎白菌(Elizabethkingia meningoseptica)和大肠杆菌共培养的设计和优化,这绕过了在脑膜脓毒性伊丽莎白菌的分子修饰过程中发现的某些限制,例如对许多抗生素的抗性和较少可用的分子工具。
本研究表达、纯化和鉴定了来自脑膜脓毒性伊丽莎白菌(Elizabethkingia meningoseptica)sp. F2 的八异戊烯基焦磷酸合酶(EmOPPS)。由于大肠杆菌或脑膜脓毒性伊丽莎白菌 sp. F2 单独培养产维生素 K2 的产量较低,我们引入了脑膜脓毒性伊丽莎白菌和大肠杆菌共培养策略来提高维生素 K2 生物合成。我们通过将来自脑膜脓毒性伊丽莎白菌 sp. F2 的维生素 K2 合成相关基因引入大肠杆菌,实现了 32mg/L 的产量,比脑膜脓毒性伊丽莎白菌 sp. F2 单独培养的产量提高了约三倍。本研究为在脑膜脓毒性伊丽莎白菌和大肠杆菌共培养系统中进一步工程化 MK-n(n=4、5、6、7、8)奠定了基础。最后,我们分别使用扫描电子显微镜、共聚焦激光扫描显微镜和流式细胞术分析了这些微生物群落的表面形态、酯酶活性和膜通透性。结果表明,共培养的细菌紧密相连,脂肪酶活性和膜通透性提高,这可能有利于细菌之间物质的交换。
我们的结果表明,共培养工程可以成为具有受限分子修饰的菌株代谢工程的一个有用方法。