Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany.
Cell Mol Life Sci. 2022 Mar 13;79(3):185. doi: 10.1007/s00018-022-04163-y.
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
高尔基膜蛋白,如糖基转移酶和其他糖基修饰酶,是蛋白质和脂质糖基化的关键。通过内切蛋白酶活性从膜锚定处释放可溶性高尔基酶是一种广泛存在但在很大程度上尚未被探索的现象。跨膜蛋白酶 SPPL3 可以特异性切割特定的高尔基酶,使其分泌,并同时改变细胞内的整体糖基化,但 SPPL3 在生理条件下切割的所有高尔基酶仍有待确定。在这里,我们建立了同源缺失 SPPL3 的 HEK293 和 HeLa 细胞系,并应用 N 端组学来鉴定 SPPL3 切割并释放到细胞培养上清液中的底物。通过高可信度,我们的研究确定了超过 20 种 SPPL3 的底物,包括全新的底物。值得注意的是,我们的 N 端组学分析提供了 SPPL3 切割位点的综合列表,表明 SPPL3 介导的高尔基酶脱落是通过跨膜蛋白酶解发生的。通过使用嵌合糖基转移酶构建体,我们表明跨膜结构域可以决定 SPPL3 的切割。使用我们的切割位点数据,我们调查了公共蛋白质组数据,发现 SPPL3 切割产物存在于人类血液中。我们还生成了表达内源性 SPPL3 基因座中 D271A 活性位点突变的 HEK293 敲入细胞。免疫印迹分析显示,选择新型底物的分泌,如关键的粘蛋白型 O-糖基化酶 GALNT2 的分泌,依赖于内源性 SPPL3 蛋白酶活性。总之,我们的研究扩展了已知的 SPPL3 生理底物的范围,证实了其在高尔基酶周转和分泌以及调节整体糖基化途径中的重要作用。