Suppr超能文献

高尔基体成熟依赖性糖酶循环通过GOLPH3控制糖鞘脂生物合成和细胞生长。

Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3.

作者信息

Rizzo Riccardo, Russo Domenico, Kurokawa Kazuo, Sahu Pranoy, Lombardi Bernadette, Supino Domenico, Zhukovsky Mikhail A, Vocat Anthony, Pothukuchi Prathyush, Kunnathully Vidya, Capolupo Laura, Boncompain Gaelle, Vitagliano Carlo, Zito Marino Federica, Aquino Gabriella, Montariello Daniela, Henklein Petra, Mandrich Luigi, Botti Gerardo, Clausen Henrik, Mandel Ulla, Yamaji Toshiyuki, Hanada Kentaro, Budillon Alfredo, Perez Franck, Parashuraman Seetharaman, Hannun Yusuf A, Nakano Akihiko, Corda Daniela, D'Angelo Giovanni, Luini Alberto

机构信息

Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.

Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy.

出版信息

EMBO J. 2021 Apr 15;40(8):e107238. doi: 10.15252/embj.2020107238. Epub 2021 Mar 22.

Abstract

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.

摘要

糖鞘脂是质膜的重要组成部分,在质膜中它们可调节包括信号受体在内的膜蛋白的活性。糖鞘脂的合成依赖于底物穿过高尔基体潴泡时由高尔基体驻留酶催化的竞争性反应。糖鞘脂的代谢产物由高尔基体堆叠中酶的位置和水平决定,但协调酶在高尔基体内定位的机制尚不清楚。在这里,我们表明,一组在糖鞘脂合成途径分支点起作用的顺序作用酶与高尔基体定位的癌蛋白GOLPH3结合。GOLPH3将这些酶分选到囊泡中进行高尔基体内逆行运输,作为潴泡成熟机制的一个组成部分。通过这些作用,GOLPH3控制特定酶在高尔基体下的定位和溶酶体降解速率。如在肿瘤中观察到的那样,GOLPH3水平升高会改变糖鞘脂合成和质膜组成,从而促进有丝分裂信号传导和细胞增殖。这些数据具有医学意义,因为它们概述了基于糖鞘脂代谢的GOLPH3一种新的致癌作用机制。

相似文献

1
Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3.
EMBO J. 2021 Apr 15;40(8):e107238. doi: 10.15252/embj.2020107238. Epub 2021 Mar 22.
2
GOLPH3 tunes up glycosphingolipid biosynthesis for cell growth.
EMBO J. 2021 Apr 15;40(8):e108070. doi: 10.15252/embj.2021108070. Epub 2021 Mar 25.
3
GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis.
EMBO J. 2021 Oct 18;40(20):e107766. doi: 10.15252/embj.2021107766. Epub 2021 Sep 13.
4
GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge.
Mol Biol Cell. 2016 Dec 1;27(24):3828-3840. doi: 10.1091/mbc.E16-01-0005. Epub 2016 Oct 5.
5
GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles.
J Cell Biol. 2021 Oct 4;220(10). doi: 10.1083/jcb.202106115. Epub 2021 Sep 2.
6
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B.
PLoS One. 2020 Aug 13;15(8):e0237514. doi: 10.1371/journal.pone.0237514. eCollection 2020.
7
Oncogenic Roles of GOLPH3 in the Physiopathology of Cancer.
Int J Mol Sci. 2020 Jan 31;21(3):933. doi: 10.3390/ijms21030933.
8
Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature.
Dev Cell. 2019 Sep 9;50(5):573-585.e5. doi: 10.1016/j.devcel.2019.05.038. Epub 2019 Jun 20.
10
GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer.
J Lipid Res. 2019 Feb;60(2):269-275. doi: 10.1194/jlr.R088328. Epub 2018 Sep 28.

引用本文的文献

2
Trafficking and localization of Golgi-resident -glycan processing enzymes in plants.
Front Plant Sci. 2025 Jul 25;16:1624949. doi: 10.3389/fpls.2025.1624949. eCollection 2025.
3
METTL9 sustains vertebrate neural development primarily via non-catalytic functions.
Nat Commun. 2025 Aug 1;16(1):7051. doi: 10.1038/s41467-025-62414-5.
6
GOLPH3-mTOR Crosstalk and Glycosylation: A Molecular Driver of Cancer Progression.
Cells. 2025 Mar 14;14(6):439. doi: 10.3390/cells14060439.
7
Double prenylation of budding yeast Ykt6 regulates cell wall integrity and autophagy.
J Biol Chem. 2025 Apr;301(4):108384. doi: 10.1016/j.jbc.2025.108384. Epub 2025 Mar 4.
9
Multiprotein Complexes of Plant Glycosyltransferases Involved in Their Function and Trafficking.
Plants (Basel). 2025 Jan 24;14(3):350. doi: 10.3390/plants14030350.
10

本文引用的文献

1
A novel mechanism for the retention of Golgi membrane proteins mediated by the Bre5p/Ubp3p deubiquitinase complex.
Mol Biol Cell. 2020 Sep 1;31(19):2139-2155. doi: 10.1091/mbc.E20-03-0168. Epub 2020 Jul 16.
2
β1,4-Galactosyltransferase V Modulates Breast Cancer Stem Cells through Wnt/β-catenin Signaling Pathway.
Cancer Res Treat. 2020 Oct;52(4):1084-1102. doi: 10.4143/crt.2020.093. Epub 2020 May 27.
3
A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels.
J Biol Chem. 2020 Mar 27;295(13):4341-4349. doi: 10.1074/jbc.AC119.011170. Epub 2020 Feb 6.
4
PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma.
Sci Transl Med. 2020 Jan 22;12(527). doi: 10.1126/scitranslmed.aax3772.
5
Translation of genome to glycome: role of the Golgi apparatus.
FEBS Lett. 2019 Sep;593(17):2390-2411. doi: 10.1002/1873-3468.13541. Epub 2019 Aug 8.
6
Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature.
Dev Cell. 2019 Sep 9;50(5):573-585.e5. doi: 10.1016/j.devcel.2019.05.038. Epub 2019 Jun 20.
7
Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network.
Biochim Biophys Acta Gen Subj. 2019 Jun;1863(6):1147-1157. doi: 10.1016/j.bbagen.2019.04.009. Epub 2019 Apr 11.
8
New era of research on cancer-associated glycosphingolipids.
Cancer Sci. 2019 May;110(5):1544-1551. doi: 10.1111/cas.14005. Epub 2019 Apr 29.
9
Maturation-driven transport and AP-1-dependent recycling of a secretory cargo in the Golgi.
J Cell Biol. 2019 May 6;218(5):1582-1601. doi: 10.1083/jcb.201807195. Epub 2019 Mar 11.
10
Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3518-3523. doi: 10.1073/pnas.1816946116. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验