Suppr超能文献

基于改进的注意力机制和特征融合模型的表面缺陷检测方法。

Surface Defect Detection Method Based on Improved Attention Mechanism and Feature Fusion Model.

机构信息

School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.

出版信息

Comput Intell Neurosci. 2022 Mar 3;2022:3188645. doi: 10.1155/2022/3188645. eCollection 2022.

Abstract

Cylinder liners are important to automobile engines. The appearance quality will directly affect the life and safety of the engines. At present, the appearance quality inspection of cylinder liners mainly relies on manual visual judgment, which is easily affected by the subjective factors of inspectors. This paper studies improved machine vision to realize surface defect detection. It proposes the improvement of the attention mechanism and a feature fusion method to locate and classify the defect. Experiments show that the method proposed in this paper has improved both accuracy and speed, and it can detect defects in production and realize industrialization. At the same time, the method studied in this paper has the value of popularization and application for appearance defect detection in other fields.

摘要

缸套对汽车发动机至关重要。其外观质量将直接影响发动机的寿命和安全性。目前,缸套的外观质量检测主要依靠人工目视判断,容易受到检验员主观因素的影响。本文研究了改进的机器视觉,以实现表面缺陷检测。提出了改进的注意力机制和特征融合方法,用于定位和分类缺陷。实验表明,本文提出的方法提高了准确性和速度,可以在生产中检测缺陷,实现工业化。同时,本文研究的方法对于其他领域的外观缺陷检测具有推广应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82dc/8913145/da8561a24957/CIN2022-3188645.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验