Center for Surface Chemistry and Catalysis: Characterization and Application Team, KU Leuven, Leuven, BE-3001, Belgium.
Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk, BE-2610, Belgium.
ChemSusChem. 2022 May 20;15(10):e202102526. doi: 10.1002/cssc.202102526. Epub 2022 Mar 25.
Industrial ammonia production without CO emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N activation was presented. N conversion to NO in a plasma reactor followed by reduction with H on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO footprint.
工业氨的生产不排放 CO,且能耗低,这是当今时代的技术重大挑战之一。目前,大规模生产氨所采用的哈伯-博世工艺使用的是需要高压的热激活铁催化剂。大量氢气的需求以及连续的运行模式使得哈伯-博世工厂的电气化难以实现。在低压和低温下的电化学解决方案面临着氮气分子在电极上惰性的问题。只有使用锂等非常活泼的化学物质才能将氮气直接还原为氨,而这些化学物质的再生则需要大量的能量。在此,提出了一种氮的氧化途径来激活氮。在等离子体反应器中将氮转化为 NO,然后在低压下用 H 在多相催化剂上还原,这可能是一种利用可再生电力、无固有 CO 排放的小规模分布式氨生产的节能选择。