Suppr超能文献

基质弥散对全氟烷基酸(PFAAs)和其他不可降解化合物的地下水羽流迁移的影响。

Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds.

机构信息

GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.

Naval Facilities Engineering and Expeditionary Warfare Center, 1000 23rd Avenue, Port Hueneme, CA 93043, United States.

出版信息

J Contam Hydrol. 2022 May;247:103987. doi: 10.1016/j.jconhyd.2022.103987. Epub 2022 Mar 8.

Abstract

Groundwater fate and transport modeling results demonstrate that matrix diffusion plays a role in attenuating the expansion of groundwater plumes of "non-degrading" or highly recalcitrant compounds. This is especially significant for systems where preferred destructive attenuation processes, such as biological and abiotic degradation, are weak or ineffective for plume control. Under these conditions, models of nondestructive physical attenuation processes, traditionally dispersion or sorption, do not demonstrate sufficient plume control unless matrix diffusion is considered. Matrix diffusion has been shown to be a notable emergent impact of geological heterogeneity, typically associated with back diffusion and extending remediation timeframes through concentration tailing of the trailing edge of a plume. However, less attention has been placed on evaluating how matrix diffusion can serve as an attenuation mechanism for the leading edge of a plume of non-degrading compounds like perfluoroalkyl acids (PFAAs), including perfluorooctane sulfonate (PFOS). In this study, the REMChlor-MD model was parametrically applied to a generic unconsolidated and heterogeneous geologic site with a constant PFOS source and no degradation of PFOS in the downgradient edge of the plume. Low levels of mechanical dispersion and retardation were used in the model for three different geologic heterogeneity cases ranging from no matrix diffusion (e.g., sand only) to considerable matrix diffusion using low permeability ("low-k") layers/lenses and/or aquitards. Our analysis shows that, in theory, many non-degrading plumes may expand for significant time periods before dispersion alone would eventually stabilize the plume; however, matrix diffusion can significantly slow the rate and degree of this migration. For one 100-year travel time scenario, consideration of matrix diffusion results in a simulated PFOS plume length that is over 80% shorter than the plume length simulated without matrix diffusion. Although many non-degrading plumes may continue to slowly expand over time, matrix diffusion resulted in lower concentrations and smaller plume footprints. Modeling multiple hydrogeologic settings showed that the effect of matrix diffusion is more significant in transmissive zones containing multiple low-k lenses/layers than transmissive zones underlain and overlain by low-k aquitards. This study found that at sites with significant matrix diffusion, groundwater plumes will be shorter, will expand more slowly, and may be amenable to a physical, retention-based, Monitored Natural Attenuation (MNA) paradigm. In this case, a small "Plume Assimilative Capacity Zone" in front of the existing plume could be reserved for slow, de minimus, future expansion of a non-degrading plume. If potential receptors are protected in this scenario, then this approach is similar to allowances for expanding plumes under some existing environmental regulatory programs. Accounting for matrix diffusion may support new strategic approaches and alternative paradigms for remediation even for sites and conditions with "non-degrading" constituents such as PFAAs, metals/metalloids, and radionuclides.

摘要

地下水的运移模拟结果表明,基质扩散在减缓“非降解”或高度持久化合物的地下水羽流的扩展方面起着重要作用。对于那些首选的破坏性衰减过程(如生物和非生物降解)较弱或无效的系统来说,这一点尤其重要,无法控制羽流。在这些条件下,传统的弥散或吸附等非破坏性物理衰减过程模型并不能充分控制羽流,除非考虑到基质扩散。基质扩散已被证明是地质异质性的一个显著的新兴影响,通常与后扩散有关,并通过羽流后缘的浓度拖尾延长修复时间。然而,人们对基质扩散如何成为非降解化合物(如全氟烷基酸,PFAAs)羽流的衰减机制的评估关注较少,包括全氟辛烷磺酸(PFOS)。在这项研究中,使用通用的未固结和非均质地质场地,在羽流下游边缘没有 PFOS 降解,将 REMChlor-MD 模型参数化应用于恒定的 PFOS 源。在模型中,使用三种不同的地质异质性情况,使用低机械弥散和阻滞度,范围从没有基质扩散(例如,只有砂)到使用低渗透率(“低 k”)层/透镜和/或隔水层的相当大的基质扩散。我们的分析表明,从理论上讲,许多非降解羽流可能会在弥散最终稳定羽流之前,在相当长的一段时间内扩展;然而,基质扩散可以显著减缓这种迁移的速度和程度。对于一个 100 年的运移时间场景,考虑基质扩散会导致模拟的 PFOS 羽流长度比没有基质扩散时模拟的羽流长度长 80%以上。尽管许多非降解羽流可能会随着时间的推移继续缓慢扩展,但基质扩散会导致浓度降低和羽流足迹减小。对多个水文地质条件的建模表明,在含有多个低 k 透镜/层的透水带中,基质扩散的影响比由低 k 隔水层覆盖和下伏的透水带更为显著。本研究发现,在基质扩散显著的场地,地下水羽流将更短,扩展速度更慢,并且可能适合基于物理保留的监测自然衰减(MNA)范式。在这种情况下,在现有的羽流前可以预留一个小的“羽流同化能力区”,用于非降解羽流的未来缓慢、最小的扩展。如果在这种情况下保护潜在的受体,那么这种方法类似于一些现有环境法规下对扩展羽流的允许。考虑基质扩散可以支持新的战略方法和替代修复范例,即使对于 PFAAs、金属/类金属和放射性核素等“非降解”成分的场地和条件也是如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验