Department of Restorative Dentistry, Operative Dentistry Division, University of Campinas, Piracicaba Dental School, Avenida Limeira 901, Areião, 13414-903 Piracicaba, SP, Brazil.
Department of Restorative Dentistry, Operative Dentistry Division, Federal University of Minas Gerais, School of Dentistry, Avenida Presidente Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
Dent Mater. 2022 Jun;38(6):907-923. doi: 10.1016/j.dental.2022.03.001. Epub 2022 Mar 11.
Etching approaches [37% phosphoric acid, self-etching, 10-3 solution (3% ferric chloride dissolved in 10% citric acid), or 1.4% nitric acid] were evaluated regarding enamel shear bond strength (24 h), dentin microtensile bond strength (24 h and 2 years), failure mode, enzymatic activity of the hybrid layer, and nanoleakage (24 h and 2 years) of Prime&Bond Universal (PBU, Dentsply-Sirona) and Gluma Bond Universal (GBU, Kulzer).
Adhesives were applied on blot-dried (wet-bonding, positive control) or air-dried (remaining groups) dentin after acid-etching (15 s) or in self-etch mode. Enamel and dentin bond strength tests used 160 human teeth (n = 10). Failure mode of tested samples and nanoleakage within the dentin-adhesive interface (n = 5) were analyzed by scanning electron microscopy. Dentin enzymatic activity was investigated by in situ zymography (n = 3).
Enamel bond strengths did not differ statistically among groups. Wet-bonding with 37% phosphoric acid showed similar dentin bond strength compared to 10-3 solution or 1.4% nitric acid at 24 h for both adhesives. None of the etchants inhibited enzymatic activity, and all groups showed dentin bond strength reduction after 2-year storage. GBU showed higher nanoleakage. Experimental etchants did not affect enamel bond strength. Dentin bond strength was not stable after 2 years, despite promising 24-hour results.
This study suggests multiple etching approaches to optimize and achieve stable dentin bonding, while also offering in-depth information about the performance of recently released universal adhesive systems.
评估酸蚀处理方法[37%磷酸、自酸蚀、10-3 溶液(3%三氯化铁溶解于 10%柠檬酸中)或 1.4%硝酸]对 Prime&Bond Universal(PBU,登士柏西诺德)和 Gluma Bond Universal(GBU,科尔)的釉质剪切粘结强度(24 小时)、牙本质微拉伸粘结强度(24 小时和 2 年)、失效模式、混合层的酶活性和纳米渗漏(24 小时和 2 年)的影响。
在酸蚀(15 秒)或自酸蚀模式后,将粘结剂应用于吸干(湿粘结,阳性对照)或风干(其余组)的牙本质上。使用 160 个人类牙齿(n=10)进行釉质和牙本质粘结强度测试。通过扫描电子显微镜分析测试样本的失效模式和牙本质-粘结剂界面内的纳米渗漏(n=5)。通过原位酶谱法研究牙本质的酶活性(n=3)。
各组釉质粘结强度无统计学差异。湿粘结用 37%磷酸与 10-3 溶液或 1.4%硝酸相比,在 24 小时时对两种粘结剂均显示出相似的牙本质粘结强度。没有一种酸蚀剂抑制了酶活性,并且所有组在 2 年储存后都显示出牙本质粘结强度降低。GBU 显示出更高的纳米渗漏。实验性酸蚀剂对釉质粘结强度没有影响。尽管 24 小时结果有希望,但牙本质粘结强度在 2 年后仍不稳定。
本研究表明,多种酸蚀处理方法可以优化和实现稳定的牙本质粘结,同时还提供了关于最近发布的通用粘结系统性能的深入信息。