Department of Physics, Institute of Chemical Technology, Mumbai, India.
Water Environ Res. 2022 Mar;94(3):e10696. doi: 10.1002/wer.10696.
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
电容去离子化是一种新兴的、快速发展的电化学技术,可在全球范围内对水进行脱盐,相关出版物呈指数级增长。人们探索了各种结构和材料来获得最佳的电吸附性能。对称结构由两个电极使用相同的材料组成,而非对称结构的电极则使用不同的材料。与对称结构相比,非对称结构由于包含法拉第材料、氧化还原活性电解质或离子特异性预嵌入材料,因此具有更高的电吸附性能。从材料角度来看,由于法拉第反应的发生,法拉第材料比碳基材料具有更高的电吸附性能。此外,可以对结构和材料进行定制,以获得目标成分和进料水中重金属所需的理想选择性。在本综述中,我们描述了电容去离子化的结构和材料的最新发展,并总结了它们的特性和脱盐性能。此外,我们还讨论了最近报道的用于去除重金属和放射性材料的结构和材料。影响电吸附性能的因素包括电极材料的合成程序、添加剂的掺入、操作模式和有机污染物等,也进行了进一步说明。最后,本文对电容去离子化领域的进一步发展提出了一些展望。
电容去离子化 (CDI) 是一种快速发展的电化学水淡化技术,相关出版物呈指数级增长。法拉第材料由于可逆的氧化还原反应或离子嵌入过程,具有更高的盐去除容量 (SAC)。CDI 与其他技术的结合表现出更高的选择性和重金属去除能力。操作参数和材料特性会影响 SAC。在未来,需要进行全面的实验,以更好地理解 CDI 结构和材料的性能。