Suppr超能文献

一种细胞壁锚定糖蛋白赋予口腔放线菌生物膜抵抗阳离子胁迫的能力。

A cell wall-anchored glycoprotein confers resistance to cation stress in Actinomyces oris biofilms.

机构信息

Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA.

Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California, USA.

出版信息

Mol Oral Microbiol. 2022 Oct;37(5):206-217. doi: 10.1111/omi.12365. Epub 2022 Mar 25.

Abstract

Actinomyces oris plays an important role in oral biofilm development. Like many gram-positive bacteria, A. oris produces a sizable number of surface proteins that are anchored to bacterial peptidoglycan by a conserved transpeptidase named the housekeeping sortase SrtA; however, the biological role of many A. oris surface proteins in biofilm formation is largely unknown. Here, we report that the glycoprotein GspA-a genetic suppressor of srtA deletion lethality-not only promotes biofilm formation but also maintains cell membrane integrity under cation stress. In comparison to wild-type cells, under elevated concentrations of mono- and divalent cations the formation of mono- and multi-species biofilms by mutant cells devoid of gspA was significantly diminished, although planktonic growth of both cell types in the presence of cations was indistinguishable. Because gspA overexpression is lethal to cells lacking gspA and srtA, we performed a genetic screen to identify GspA determinants involving cell viability. DNA sequencing and biochemical characterizations of viable clones revealed that mutations of two critical cysteine residues and a serine residue severely affected GspA glycosylation and biofilm formation. Furthermore, mutant cells lacking gspA were markedly sensitive to sodium dodecyl sulfate, a detergent that solubilizes the cytoplasmic membranes, suggesting the cell envelope of the gspA mutant was altered. Consistent with this observation, the gspA mutant exhibited increased membrane permeability, independent of GspA glycosylation, compared to the wild-type strain. Altogether, the results support the notion that the cell wall-anchored glycoprotein GspA provides a defense mechanism against cation stress in biofilm development promoted by A. oris.

摘要

口腔放线菌在口腔生物膜的形成中起着重要作用。与许多革兰氏阳性菌一样,口腔放线菌产生大量表面蛋白,这些蛋白通过一种名为管家天冬酰胺转肽酶 SrtA 的保守转肽酶锚定在细菌肽聚糖上;然而,许多口腔放线菌表面蛋白在生物膜形成中的生物学作用在很大程度上是未知的。在这里,我们报告了糖蛋白 GspA-一种 srtA 缺失致死性的遗传抑制剂-不仅促进生物膜的形成,而且在阳离子胁迫下维持细胞膜的完整性。与野生型细胞相比,突变细胞在缺乏 gspA 的情况下形成单种和多种生物膜的能力在单种和二价阳离子浓度升高时显著降低,尽管这两种细胞类型在存在阳离子的情况下浮游生长是无法区分的。由于 gspA 的过表达对缺乏 gspA 和 srtA 的细胞是致命的,我们进行了遗传筛选以鉴定涉及细胞活力的 GspA 决定因素。对有活力克隆的 DNA 测序和生化特性分析表明,两个关键半胱氨酸残基和一个丝氨酸残基的突变严重影响了 GspA 的糖基化和生物膜的形成。此外,缺乏 gspA 的突变细胞对十二烷基硫酸钠(一种溶解细胞质膜的去污剂)明显敏感,这表明 gspA 突变细胞的细胞包膜发生了改变。与这一观察结果一致的是,与野生型菌株相比,gspA 突变体表现出增加的膜通透性,而与 GspA 糖基化无关。总的来说,这些结果支持了这样一种观点,即细胞壁锚定的糖蛋白 GspA 为口腔放线菌促进的生物膜发展中抵抗阳离子胁迫提供了一种防御机制。

相似文献

1
A cell wall-anchored glycoprotein confers resistance to cation stress in Actinomyces oris biofilms.
Mol Oral Microbiol. 2022 Oct;37(5):206-217. doi: 10.1111/omi.12365. Epub 2022 Mar 25.
2
A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris.
J Bacteriol. 2016 Jul 13;198(15):2064-73. doi: 10.1128/JB.00353-16. Print 2016 Aug 1.
4
Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein.
Mol Microbiol. 2014 Dec;94(6):1227-41. doi: 10.1111/mmi.12780. Epub 2014 Sep 17.
5
Molecular basis for sortase-catalyzed pilus tip assembly.
mBio. 2024 Sep 11;15(9):e0148424. doi: 10.1128/mbio.01484-24. Epub 2024 Aug 2.
8
Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.
Methods Mol Biol. 2016;1440:109-22. doi: 10.1007/978-1-4939-3676-2_9.
9
A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2203114119. doi: 10.1073/pnas.2203114119. Epub 2022 Jul 5.
10

引用本文的文献

1
Molecular basis for sortase-catalyzed pilus tip assembly.
mBio. 2024 Sep 11;15(9):e0148424. doi: 10.1128/mbio.01484-24. Epub 2024 Aug 2.

本文引用的文献

1
Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18041-18049. doi: 10.1073/pnas.1907733116. Epub 2019 Aug 19.
4
Biogenesis of the Gram-positive bacterial cell envelope.
Curr Opin Microbiol. 2016 Dec;34:31-37. doi: 10.1016/j.mib.2016.07.015. Epub 2016 Aug 4.
5
Stress Physiology of Lactic Acid Bacteria.
Microbiol Mol Biol Rev. 2016 Jul 27;80(3):837-90. doi: 10.1128/MMBR.00076-15. Print 2016 Sep.
6
Thiol-Disulfide Exchange in Gram-Positive Firmicutes.
Trends Microbiol. 2016 Nov;24(11):902-915. doi: 10.1016/j.tim.2016.06.010. Epub 2016 Jul 15.
7
Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.
Methods Mol Biol. 2016;1440:109-22. doi: 10.1007/978-1-4939-3676-2_9.
8
A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris.
J Bacteriol. 2016 Jul 13;198(15):2064-73. doi: 10.1128/JB.00353-16. Print 2016 Aug 1.
9
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.
Curr Top Microbiol Immunol. 2017;404:159-175. doi: 10.1007/82_2016_8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验