Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
Protein Homeostasis Laboratory, Department of Life Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
J Mater Chem B. 2022 Mar 30;10(13):2230-2237. doi: 10.1039/d2tb00356b.
The human innate immune system eliminates invading pathogens through phagocytosis. The first step of this process is activating the nicotinamide adenine dinucleotide phosphate oxidase (Nox2) that utilizes NADPH to produce superoxide anion radicals and other reactive oxygen species (ROS). These ROS then alter the mitochondrial membrane potential and increase peroxide in the mitochondria. The peroxide reacts with myeloperoxidase (MPO) and chloride ions to produce pro-inflammatory oxidant hypochlorous acid (HOCl), which causes oxidative stress leading to cell death. The adverse effects of HOCl are highly associated with cardiovascular disease, neurodegenerative disorders, acute lung injuries, inflammatory diseases, and cancer. Therefore, mapping HOCl in the Nox2 pathway is crucial for an in-depth understanding of the innate immune system. Herein, we developed a unique pentacyclic pyridinium probe, PM-S, that exhibited efficient photoinduced electron transfer (PeT) with HOCl triggered methyl(phenyl)sulfane. PM-S showed several advantages, including better chemical stability, large Stokes shifts (>6258 cm), high sensitivity (∼50 nM) and specificity to mitochondria, compared to its parent pyrylium PY-S derivative. This probe is also efficient in studying the HOCl produced the Nox2 pathway in HepG2 and HeLa cells. Analysis using a simple microplate reader and FACS analysis with various inhibitors and inducers supported the mechanistic understanding of Nox2, which can offer an advanced platform for monitoring the inflammatory process more efficiently.
人体先天免疫系统通过吞噬作用消除入侵的病原体。这个过程的第一步是激活烟酰胺腺嘌呤二核苷酸磷酸氧化酶 (Nox2),它利用 NADPH 产生超氧阴离子自由基和其他活性氧物质 (ROS)。这些 ROS 随后改变线粒体膜电位并增加线粒体中的过氧化物。过氧化物与髓过氧化物酶 (MPO) 和氯离子反应生成促炎氧化剂次氯酸 (HOCl),导致氧化应激导致细胞死亡。HOCl 的不良影响与心血管疾病、神经退行性疾病、急性肺损伤、炎症性疾病和癌症高度相关。因此,绘制 Nox2 途径中的 HOCl 对于深入了解先天免疫系统至关重要。在这里,我们开发了一种独特的五环吡啶鎓探针 PM-S,它与 HOCl 触发的甲基(苯基)硫烷具有高效的光诱导电子转移 (PeT)。与母体吡喃鎓 PY-S 衍生物相比,PM-S 具有几个优点,包括更好的化学稳定性、更大的斯托克斯位移 (>6258 cm)、对线粒体的高灵敏度 (∼50 nM) 和特异性。该探针还可有效研究 HepG2 和 HeLa 细胞中 Nox2 途径产生的 HOCl。使用简单的微孔板读数器进行分析以及使用各种抑制剂和诱导剂进行 FACS 分析支持了对 Nox2 的机制理解,这为更有效地监测炎症过程提供了一个先进的平台。