Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
Curr Biol. 2022 Apr 11;32(7):1577-1592.e8. doi: 10.1016/j.cub.2022.02.058. Epub 2022 Mar 14.
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
线粒体损伤 (MtD) 代表了细胞内稳态的剧烈变化,需要进行代谢变化并刺激线粒体自噬。MtD 的一个快速反应是称为 ADA(急性损伤诱导的肌动蛋白)的线粒体周围肌动蛋白快速聚合。ADA 的激活机制尚不清楚。在这里,我们使用线粒体去极化或复合物 I 抑制剂二甲双胍诱导 ADA。我们表明,ADA 需要两条平行的信号通路。在一条通路中,细胞溶质中钙的增加依次激活 PKC-β、Rac、WAVE 调节复合物和 Arp2/3 复合物。在另一条通路中,细胞内 ATP 的下降依次激活 AMPK(通过 LKB1)、Cdc42 和 FMNL 成核因子。我们还分别鉴定了 Rac 和 Cdc42 的假定鸟嘌呤核苷酸交换因子 Trio 和 Fgd1,它们的磷酸化状态在线粒体去极化时增加,并且其抑制物抑制 ADA。去极化诱导的钙增加依赖于线粒体钠钙交换蛋白 NCLX,表明初始线粒体钙外排。我们还表明,ADA 抑制会导致线粒体去极化时线粒体形状变化增强,表明 ADA 抑制了这些形状变化。这些去极化诱导的形状变化不是碎片化,而是线粒体内膜的圆形化,这依赖于线粒体内膜蛋白酶 Oma1。ADA 抑制增加了 Oma1 底物,即 GTP 酶 dynamin Opa1 的蛋白水解加工。这些结果表明,ADA 需要 Arp2/3 复合物和形成蛋白的共同作用,在线粒体周围聚合肌动蛋白丝网络,并且 ADA 网络抑制了线粒体去极化时发生的快速线粒体形状变化。