Xun Zhipeng, Hao Dapeng, Ziff Robert M
School of Material Sciences and Physics, China University of Mining and Technology, Xuzhou 221116, China.
Center for the Study of Complex System and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2800, USA.
Phys Rev E. 2022 Feb;105(2-1):024105. doi: 10.1103/PhysRevE.105.024105.
Extended-range percolation on various regular lattices, including all 11 Archimedean lattices in two dimensions and the simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices in three dimensions, is investigated. In two dimensions, correlations between coordination number z and site thresholds p_{c} for Archimedean lattices up to 10th nearest neighbors (NN) are seen by plotting z versus 1/p_{c} and z versus -1/ln(1-p_{c}) using the data of d'Iribarne et al. [J. Phys. A 32, 2611 (1999)JPHAC50305-447010.1088/0305-4470/32/14/002] and others. The results show that all the plots overlap on a line with a slope consistent with the theoretically predicted asymptotic value of zp_{c}∼4η_{c}=4.51235, where η_{c} is the continuum threshold for disks. In three dimensions, precise site and bond thresholds for bcc and fcc lattices with 2nd and 3rd NN, and bond thresholds for the sc lattice with up to the 13th NN, are obtained by Monte Carlo simulations, using an efficient single-cluster growth method. For site percolation, the values of thresholds for different types of lattices with compact neighborhoods also collapse together, and linear fitting is consistent with the predicted value of zp_{c}∼8η_{c}=2.7351, where η_{c} is the continuum threshold for spheres. For bond percolation, Bethe-lattice behavior p_{c}=1/(z-1) is expected to hold for large z, and the finite-z correction is confirmed to satisfy zp_{c}-1∼a_{1}z^{-x}, with x=2/3 for three dimensions as predicted by Frei and Perkins [Electron. J. Probab. 21, 56 (2016)1083-648910.1214/16-EJP6] and by Xu et al. [Phys. Rev. E 103, 022127 (2021)2470-004510.1103/PhysRevE.103.022127]. Our analysis indicates that for compact neighborhoods, the asymptotic behavior of zp_{c} has universal properties, depending only on the dimension of the system and whether site or bond percolation but not on the type of lattice.
我们研究了各种规则晶格上的扩展范围渗流,包括二维的所有11种阿基米德晶格以及三维的简单立方(sc)晶格、体心立方(bcc)晶格和面心立方(fcc)晶格。在二维中,利用迪里巴恩等人[《物理学报A》32, 2611 (1999)JPHAC50305 - 447010.1088/0305 - 4470/32/14/002]等的数据,通过绘制z与1/p_c以及z与 - 1/ln(1 - p_c)的关系图,观察了阿基米德晶格中直至第10个最近邻(NN)的配位数z与位点阈值p_c之间的相关性。结果表明,所有的图都重叠在一条直线上,其斜率与理论预测的渐近值zp_c∼4η_c = 4.51235一致,其中η_c是圆盘的连续阈值。在三维中,使用一种高效的单簇生长方法,通过蒙特卡罗模拟获得了具有第二和第三近邻的bcc和fcc晶格的精确位点和键阈值,以及具有直至第13个近邻的sc晶格的键阈值。对于位点渗流,具有紧凑邻域的不同类型晶格的阈值值也会汇聚在一起,线性拟合与预测值zp_c∼8η_c = 2.7351一致,其中η_c是球体的连续阈值。对于键渗流,对于大z预期贝特晶格行为p_c = 1/(z - 1)成立,并且有限z修正被证实满足zp_c - 1∼a_1z^(-x),其中x = 2/3,这是弗赖和珀金斯[《电子概率杂志》21, 56 (2016)1083 - 648910.1214/16 - EJP6]以及徐等人[《物理评论E》103, 022127 (2021)2470 - 004510.1103/PhysRevE.103.022127]所预测的三维情况。我们的分析表明,对于紧凑邻域,zp_c的渐近行为具有普遍性质,仅取决于系统的维度以及是位点渗流还是键渗流,而不取决于晶格的类型。