Suppr超能文献

[预测外周动脉疾病患者的大出血事件:OAC-PAD风险评分]

[Predicting major bleeding events in patients with peripheral arterial disease: the OAC-PAD risk score].

作者信息

Behrendt Christian-Alexander, Rother Ulrich, Uhl Christian, Goertz Hartmut, Stavroulakis Konstantinos, Gombert Alexander

机构信息

Forschungsgruppe GermanVasc, Klinik und Poliklinik für Gefäßmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland.

Universitätsklinikum Erlangen, Erlangen, Deutschland.

出版信息

Gefasschirurgie. 2022;27(3):208-212. doi: 10.1007/s00772-022-00881-6. Epub 2022 Mar 11.

Abstract

Although patients with peripheral arterial disease (PAD) are at a high risk of major bleeding owing to their comorbidity and risk profile, no validated tools exist to predict bleeding risk. To make matters worse, several randomized and controlled trials have excluded patients who are at a high risk of bleeding. Using routine health insurance claims data and machine learning methods, a pragmatic prediction model was developed and internally validated. The OAC-PAD risk score identified eight variables that can predict major bleeding events within 1 year of inpatient treatment for PAD. This risk score can help to carry out a tailored patient-centered risk-benefit assessment in order to obtain the maximum potential from available antithrombotic treatment strategies.

摘要

尽管外周动脉疾病(PAD)患者因其合并症和风险状况而面临大出血的高风险,但目前尚无经过验证的工具来预测出血风险。更糟糕的是,一些随机对照试验排除了出血风险高的患者。利用常规医疗保险理赔数据和机器学习方法,开发了一个实用的预测模型并进行了内部验证。OAC-PAD风险评分确定了八个变量,这些变量可以预测PAD住院治疗1年内的大出血事件。该风险评分有助于开展以患者为中心的个性化风险效益评估,以便从现有的抗血栓治疗策略中获得最大潜在收益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9156/8913852/5a224b351bf4/772_2022_881_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验