College of Agriculture, Nanjing Agricultural University, Nanjing, China.
Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China.
Plant Physiol. 2022 Jun 27;189(3):1694-1714. doi: 10.1093/plphys/kiac124.
The remobilization of nonstructural carbohydrates (NSCs) reserved in rice (Oryza sativa) sheaths is essential for grain filling. This assimilate distribution between plant tissues and organs is determined by sucrose non-fermenting-1-related protein kinase 1 (SnRK1). However, the SnRK1-mediated mechanism regulating the sheath-to-panicle transport of NSCs in rice remains unknown. In this study, leaf cutting treatment was used to accelerate NSC transport in the rice sheaths. Accelerated NSC transport was accompanied by increased levels of OsSnRK1a mRNA expression, SnRK1a protein expression, catalytic subunit phosphorylation of SnRK1, and SnRK1 activity, indicating that SnRK1 activity plays an important role in sheath NSC transport. We also discovered that trehalose-6-phosphate, a signal of sucrose availability, slightly reduced SnRK1 activity in vitro. Since SnRK1 activity is mostly regulated by OsSnRK1a transcription in response to low sucrose content, we constructed an snrk1a mutant to verify the function of SnRK1 in NSC transport. NSCs accumulated in the sheaths of snrk1a mutant plants and resulted in a low seed setting rate and grain weight, verifying that SnRK1 activity is essential for NSC remobilization. Using phosphoproteomics and parallel reaction monitoring, we identified 20 SnRK1-dependent phosphosites that are involved in NSC transport. In addition, the SnRK1-mediated phosphorylation of the phosphosites directly affected starch degradation, sucrose metabolism, phloem transport, sugar transport across the tonoplast, and glycolysis in rice sheaths to promote NSC transport. Therefore, our findings reveal the importance, function, and possible regulatory mechanism of SnRK1 in the sheath-to-panicle transport of NSCs in rice.
非结构性碳水化合物(NSC)在水稻(Oryza sativa)叶鞘中的再动员对籽粒灌浆至关重要。这种植物组织和器官之间的同化物分配由蔗糖非发酵-1 相关蛋白激酶 1(SnRK1)决定。然而,SnRK1 介导的调节水稻叶鞘到穗部 NSC 运输的机制尚不清楚。在本研究中,采用叶片切割处理来加速水稻叶鞘中 NSC 的运输。加速的 NSC 运输伴随着 OsSnRK1a mRNA 表达、SnRK1a 蛋白表达、SnRK1 催化亚基磷酸化和 SnRK1 活性的增加,表明 SnRK1 活性在叶鞘 NSC 运输中起重要作用。我们还发现,蔗糖可用性的信号物——海藻糖-6-磷酸,在体外略微降低了 SnRK1 的活性。由于 SnRK1 活性主要通过低蔗糖含量下 OsSnRK1a 的转录来调节,我们构建了 snrk1a 突变体来验证 SnRK1 在 NSC 运输中的功能。NSC 在 snrk1a 突变体植物的叶鞘中积累,导致结实率和粒重降低,验证了 SnRK1 活性对 NSC 再动员的重要性。通过磷酸化蛋白质组学和平行反应监测,我们鉴定了 20 个与 NSC 运输有关的 SnRK1 依赖性磷酸化位点。此外,SnRK1 介导的磷酸化作用直接影响淀粉降解、蔗糖代谢、韧皮部运输、液泡膜糖转运和糖酵解,从而促进水稻叶鞘中的 NSC 运输。因此,我们的研究结果揭示了 SnRK1 在水稻叶鞘到穗部 NSC 运输中的重要性、功能和可能的调节机制。