Suppr超能文献

从弯曲表面到平面的转变中的光混沌动力学。

Light chaotic dynamics in the transformation from curved to flat surfaces.

机构信息

Department of Physics, The Jack and Pearl Resnick Institute for Advanced Technology, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2112052119. doi: 10.1073/pnas.2112052119. Epub 2022 Mar 16.

Abstract

Light propagation on a two-dimensional curved surface embedded in a three-dimensional space has attracted increasing attention as an analog model of four-dimensional curved spacetime in the laboratory. Despite recent developments in modern cosmology on the dynamics and evolution of the universe, investigation of nonlinear dynamics of light on non-Euclidean geometry is still scarce, with fundamental questions, such as the effect of curvature on deterministic chaos, challenging to address. Here, we study classical and wave chaotic dynamics on a family of surfaces of revolution by considering its equivalent conformally transformed flat billiard, with nonuniform distribution of the refractive index. We prove rigorously that these two systems share the same dynamics. By exploring the Poincaré surface of section, the Lyapunov exponent, and the statistics of eigenmodes and eigenfrequency spectrum in the transformed inhomogeneous table billiard, we find that the degree of chaos is fully controlled by a single, curvature-related geometric parameter of the curved surface. A simple interpretation of our findings in transformed billiards, the “fictitious force,” allows us to extend our prediction to other classes of curved surfaces. This powerful analogy between two a priori unrelated systems not only brings forward an approach to control the degree of chaos, but also provides potentialities for further studies and applications in various fields, such as billiards design, optical fibers, or laser microcavities.

摘要

光在二维弯曲表面上的传播在实验室中作为对四维弯曲时空的模拟模型引起了越来越多的关注。尽管现代宇宙学在宇宙的动力学和演化方面取得了新的进展,但对非欧几里得几何上的光的非线性动力学的研究仍然很少,曲率对确定性混沌的影响等基本问题难以解决。在这里,我们通过考虑等效的共形变换平坦台球,研究了旋转曲面族上的经典和波混沌动力学,其中折射率呈非均匀分布。我们严格证明了这两个系统具有相同的动力学。通过探索庞加莱截面、李雅普诺夫指数以及变换非均匀平板台球中的本征模和本征频率谱的统计,我们发现混沌程度完全由曲面的一个单一的、与曲率相关的几何参数控制。在变换台球中,对我们发现的简单解释“虚拟力”,允许我们将我们的预测扩展到其他类的曲面。这两个原本没有关联的系统之间的强大类比不仅提出了一种控制混沌程度的方法,而且为各种领域的进一步研究和应用提供了可能性,例如台球设计、光纤或激光微腔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61e/8944774/4f23d7e0e636/pnas.2112052119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验