Suppr超能文献

通过深度对抗学习消除大气湍流

Removing Atmospheric Turbulence via Deep Adversarial Learning.

作者信息

Rai Shyam Nandan, Jawahar C V

出版信息

IEEE Trans Image Process. 2022;31:2633-2646. doi: 10.1109/TIP.2022.3158547. Epub 2022 Mar 22.

Abstract

Restoring images degraded due to atmospheric turbulence is challenging as it consists of several distortions. Several deep learning methods have been proposed to minimize atmospheric distortions that consist of a single-stage deep network. However, we find that a single-stage deep network is insufficient to remove the mixture of distortions caused by atmospheric turbulence. We propose a two-stage deep adversarial network that minimizes atmospheric turbulence to mitigate this. The first stage reduces the geometrical distortion and the second stage minimizes the image blur. We improve our network by adding channel attention and a proposed sub-pixel mechanism, which utilizes the information between the channels and further reduces the atmospheric turbulence at the finer level. Unlike previous methods, our approach neither uses any prior knowledge about atmospheric turbulence conditions at inference time nor requires the fusion of multiple images to get a single restored image. Our final restoration models DT-GAN+ and DTD-GAN+ outperform the general state-of-the-art image-to-image translation models and baseline restoration models. We synthesize turbulent image datasets to train the restoration models. Additionally, we also curate a natural turbulent dataset from YouTube to show the generalisability of the proposed model. We perform extensive experiments on restored images by utilizing them for downstream tasks such as classification, pose estimation, semantic keypoint estimation, and depth estimation. We observe that our restored images outperform turbulent images in downstream tasks by a significant margin demonstrating the restoration model's applicability in real-world problems.

摘要

恢复因大气湍流而退化的图像具有挑战性,因为它包含多种失真。已经提出了几种深度学习方法来最小化由单阶段深度网络组成的大气失真。然而,我们发现单阶段深度网络不足以消除由大气湍流引起的失真混合。我们提出了一种两阶段深度对抗网络来最小化大气湍流以缓解这一问题。第一阶段减少几何失真,第二阶段最小化图像模糊。我们通过添加通道注意力和一种提出的子像素机制来改进我们的网络,该机制利用通道之间的信息并在更精细的层面上进一步减少大气湍流。与以前的方法不同,我们的方法在推理时既不使用任何关于大气湍流条件的先验知识,也不需要融合多个图像来获得单个恢复图像。我们最终的恢复模型DT-GAN+和DTD-GAN+优于一般的最新图像到图像翻译模型和基线恢复模型。我们合成湍流图像数据集来训练恢复模型。此外,我们还从YouTube策划了一个自然湍流数据集,以展示所提出模型的通用性。我们通过将恢复后的图像用于下游任务,如图像分类、姿态估计、语义关键点估计和深度估计,对其进行了广泛的实验。我们观察到,在下游任务中,我们恢复后的图像比湍流图像有显著优势,这证明了恢复模型在实际问题中的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验