IEEE Trans Vis Comput Graph. 2023 Jul;29(7):3368-3379. doi: 10.1109/TVCG.2022.3160005. Epub 2023 May 26.
In this work, we present a novel method called WSDesc to learn 3D local descriptors in a weakly supervised manner for robust point cloud registration. Our work builds upon recent 3D CNN-based descriptor extractors, which leverage a voxel-based representation to parameterize local geometry of 3D points. Instead of using a predefined fixed-size local support in voxelization, we propose to learn the optimal support in a data-driven manner. To this end, we design a novel differentiable voxelization layer that can back-propagate the gradient to the support size optimization. To train the extracted descriptors, we propose a novel registration loss based on the deviation from rigidity of 3D transformations, and the loss is weakly supervised by the prior knowledge that the input point clouds have partial overlap, without requiring ground-truth alignment information. Through extensive experiments, we show that our learned descriptors yield superior performance on existing geometric registration benchmarks.
在这项工作中,我们提出了一种名为 WSDesc 的新方法,用于在弱监督的情况下学习 3D 局部描述符,以实现鲁棒的点云配准。我们的工作基于最近的基于 3D CNN 的描述符提取器,这些提取器利用基于体素的表示来参数化 3D 点的局部几何形状。我们不是在体素化中使用预定义的固定大小的局部支持,而是提出以数据驱动的方式学习最优支持。为此,我们设计了一种新颖的可微分体素化层,可以将梯度反向传播到支持大小优化。为了训练提取的描述符,我们提出了一种基于 3D 变换刚性偏差的新的配准损失,并且该损失通过输入点云具有部分重叠的先验知识进行弱监督,而无需地面真实对齐信息。通过广泛的实验,我们表明我们学习到的描述符在现有的几何配准基准测试中表现出优越的性能。